If Adam's credit card has an APR of 14.63%, what is Adam's balance at the end of June?

[tex]\[
\begin{array}{|c|r|c|}
\hline
\text{Date} & \text{Amount (\$)} & \text{Transaction} \\
\hline
4/1 & 626.45 & \text{Beginning balance} \\
\hline
4/10 & 37.41 & \text{Purchase} \\
\hline
4/12 & 44.50 & \text{Purchase} \\
\hline
5/3 & 65.50 & \text{Payment} \\
\hline
5/16 & 24.89 & \text{Purchase} \\
\hline
5/20 & 104.77 & \text{Payment} \\
\hline
6/6 & 23.60 & \text{Payment} \\
\hline
6/10 & 15.00 & \text{Purchase} \\
\hline
6/14 & 51.85 & \text{Purchase} \\
\hline
\end{array}
\][/tex]

A. \[tex]$629.42
B. \$[/tex]629.66
C. \[tex]$627.27
D. \$[/tex]628.40



Answer :

To determine Adam's balance at the end of June, let's go through each transaction step by step and update the balance accordingly.

1. Starting balance on 4/1: [tex]$626.45 2. Transaction on 4/10: A purchase of \$[/tex]37.41
[tex]\[ \text{New balance} = 626.45 - 37.41 = 589.04 \][/tex]

3. Transaction on 4/12: A purchase of \[tex]$44.50 \[ \text{New balance} = 589.04 - 44.50 = 544.54 \] 4. Transaction on 5/3: A payment of \$[/tex]65.50
[tex]\[ \text{New balance} = 544.54 + 65.50 = 610.04 \][/tex]

5. Transaction on 5/16: A purchase of \[tex]$24.89 \[ \text{New balance} = 610.04 - 24.89 = 585.15 \] 6. Transaction on 5/20: A payment of \$[/tex]104.77
[tex]\[ \text{New balance} = 585.15 + 104.77 = 689.92 \][/tex]

7. Transaction on 6/6: A payment of \[tex]$23.60 \[ \text{New balance} = 689.92 + 23.60 = 713.52 \] 8. Transaction on 6/10: A purchase of \$[/tex]15.00
[tex]\[ \text{New balance} = 713.52 - 15.00 = 698.52 \][/tex]

9. Transaction on 6/14: A purchase of \[tex]$51.85 \[ \text{New balance} = 698.52 - 51.85 = 646.67 \] After applying all the transactions, Adam's balance at the end of June is: \[ \text{Final balance} = \$[/tex]646.67
\]

Therefore, none of the provided options correctly match the calculated final balance. It seems there might be an error or a misunderstanding in the problem statement or choices given, but based on our calculations, the correct balance should be \$646.67.