Which is equivalent to [tex]\((\sqrt{10})^{\frac{3}{4} \times}\)[/tex]?

A. [tex]\((\sqrt[3]{10})^{4x}\)[/tex]
B. [tex]\((\sqrt[4]{10})^{3x}\)[/tex]
C. [tex]\((\sqrt[6]{10})^{4x}\)[/tex]
D. [tex]\((\sqrt[8]{10})^{3x}\)[/tex]



Answer :

To determine which expression is equivalent to [tex]\(\sqrt{10}^{\frac{3}{4} \cdot x}\)[/tex], we can follow these steps:

1. Start by rewriting [tex]\(\sqrt{10}\)[/tex] using exponent notation. The square root of 10 can be expressed as [tex]\(10^{1/2}\)[/tex].

2. Substitute this into the original expression:
[tex]\[ \left( \sqrt{10} \right)^{\frac{3}{4} \cdot x} = \left( 10^{1/2} \right)^{\frac{3}{4} \cdot x} \][/tex]

3. Apply the power of a power rule [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]:
[tex]\[ \left( 10^{1/2} \right)^{\frac{3}{4} \cdot x} = 10^{(1/2) \cdot (\frac{3}{4} \cdot x)} \][/tex]

4. Simplify the exponent:
[tex]\[ 10^{\frac{1}{2} \cdot \frac{3}{4} \cdot x} = 10^{\frac{3}{8} \cdot x} \][/tex]

5. Now, convert the expression back to a root form. Recall that [tex]\(a^{1/n} = \sqrt[n]{a}\)[/tex]:
[tex]\[ 10^{\frac{3x}{8}} = \left( 10^1 \right)^{\frac{3x}{8}} = \left( \sqrt[8]{10} \right)^{3x} \][/tex]

So, [tex]\(\sqrt{10}^{\frac{3}{4} \cdot x}\)[/tex] is equivalent to [tex]\(\left( \sqrt[8]{10} \right)^{3x}\)[/tex].

Therefore, the correct answer is:
[tex]\[ (\sqrt[8]{10})^{3x} \][/tex]

The final choice is (d) [tex]\((\sqrt[8]{10})^{3x}\)[/tex].