Given the following functions, find and simplify [tex]\((f \cdot g)(x)\)[/tex].

[tex]\[
\begin{array}{l}
f(x) = -3x + 2 \\
g(x) = -x + 1
\end{array}
\][/tex]

Provide your answer below:



Answer :

To find and simplify the product [tex]\((f \cdot g)(x)\)[/tex] of the given functions [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex], we follow these steps:

1. Define the functions:
[tex]\[ f(x) = -3x + 2 \][/tex]
[tex]\[ g(x) = -x + 1 \][/tex]

2. Form the product of the functions:
The product [tex]\((f \cdot g)(x)\)[/tex] is given by multiplying [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]:
[tex]\[ (f \cdot g)(x) = f(x) \cdot g(x) = (-3x + 2) \cdot (-x + 1) \][/tex]

3. Expand the product:
Use the distributive property to expand the product:
[tex]\[ (-3x + 2) \cdot (-x + 1) \][/tex]
Distribute each term in the first binomial by each term in the second binomial:
[tex]\[ = (-3x) \cdot (-x) + (-3x) \cdot 1 + 2 \cdot (-x) + 2 \cdot 1 \][/tex]

4. Calculate each term:
[tex]\[ = 3x^2 + (-3x) + (-2x) + 2 \][/tex]

5. Combine like terms:
Combine the [tex]\( -3x \)[/tex] and [tex]\( -2x \)[/tex] terms:
[tex]\[ = 3x^2 - 5x + 2 \][/tex]

Thus, the product [tex]\((f \cdot g)(x)\)[/tex] before and after simplification is:

[tex]\[ (f \cdot g)(x) = (1 - x)(2 - 3x) \][/tex]

And when simplified:

[tex]\[ (f \cdot g)(x) = (x - 1)(3x - 2) \][/tex]

Hence, the fully simplified expression for [tex]\((f \cdot g)(x)\)[/tex] is:
[tex]\[ (f \cdot g)(x) = 3x^2 - 5x + 2 \][/tex]

Other Questions