Given the following functions, find and simplify [tex]\((f+g)(2)\)[/tex]:

[tex]\[
\begin{aligned}
f(x) &= -3x^2 + 3x + 3 \\
g(x) &= 3x - 4
\end{aligned}
\][/tex]



Answer :

To find and simplify [tex]\((f + g)(2)\)[/tex], we start by evaluating each function at [tex]\(x = 2\)[/tex].

First, we'll evaluate [tex]\(f(2)\)[/tex]:
[tex]\[ f(x) = -3x^2 + 3x + 3 \][/tex]
Substitute [tex]\(x = 2\)[/tex]:
[tex]\[ f(2) = -3(2)^2 + 3(2) + 3 \][/tex]
Calculate the squares and the products:
[tex]\[ f(2) = -3(4) + 6 + 3 \][/tex]
[tex]\[ f(2) = -12 + 6 + 3 \][/tex]
Combine the constants:
[tex]\[ f(2) = -12 + 9 = -3 \][/tex]

Next, we'll evaluate [tex]\(g(2)\)[/tex]:
[tex]\[ g(x) = 3x - 4 \][/tex]
Substitute [tex]\(x = 2\)[/tex]:
[tex]\[ g(2) = 3(2) - 4 \][/tex]
Calculate the product:
[tex]\[ g(2) = 6 - 4 \][/tex]
Combine the constants:
[tex]\[ g(2) = 2 \][/tex]

Now, to find [tex]\((f + g)(2)\)[/tex], we add the values of [tex]\(f(2)\)[/tex] and [tex]\(g(2)\)[/tex]:
[tex]\[ (f + g)(2) = f(2) + g(2) \][/tex]
Substitute the values we found:
[tex]\[ (f + g)(2) = -3 + 2 \][/tex]
Combine the constants:
[tex]\[ (f + g)(2) = -1 \][/tex]

Thus, the simplified value of [tex]\((f + g)(2)\)[/tex] is [tex]\(-1\)[/tex].