Given the following table of values, compute [tex]\( (g \circ f)(3) \)[/tex].

[tex]\[
\begin{array}{|c|c|c|}
\hline
x & f(x) & g(x) \\
\hline
-4 & 2 & 3 \\
\hline
-3 & -4 & -1 \\
\hline
-2 & 0 & 1 \\
\hline
-1 & -2 & -4 \\
\hline
0 & 1 & -3 \\
\hline
1 & 3 & -2 \\
\hline
2 & -1 & 4 \\
\hline
3 & 4 & 0 \\
\hline
4 & -3 & 2 \\
\hline
\end{array}
\][/tex]



Answer :

To find [tex]\((g \circ f)(3)\)[/tex], we need to follow a series of steps involving looking up values from the given table. Here's how you do it:

1. Find [tex]\( f(3) \)[/tex]:
Begin by looking into the table for the value of [tex]\( f \)[/tex] when [tex]\( x = 3 \)[/tex].

From the table:
[tex]\[ \begin{array}{|c|c|c|} \hline x & f(x) & g(x) \\ \hline 3 & 4 & 0 \\ \hline \end{array} \][/tex]
Therefore, [tex]\( f(3) = 4 \)[/tex].

2. Find [tex]\( g(f(3)) \)[/tex]:
Now, we need to find [tex]\( g \)[/tex] at the value we just found for [tex]\( f(3) \)[/tex]. So we need to determine [tex]\( g(4) \)[/tex].

From the table:
[tex]\[ \begin{array}{|c|c|c|} \hline x & f(x) & g(x) \\ \hline 4 & -3 & 2 \\ \hline \end{array} \][/tex]
Therefore, [tex]\( g(4) = 2 \)[/tex].

3. Combining these results:
Now we can combine the results to find [tex]\( (g \circ f)(3) \)[/tex]:
[tex]\[ (g \circ f)(3) = g(f(3)) = g(4) = 2 \][/tex]

Thus, the value of [tex]\( (g \circ f)(3) \)[/tex] is [tex]\( 2 \)[/tex].