Answered

The table represents the equation [tex]\( y = 2 - 4x \)[/tex].

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-2 & 10 \\
\hline
-1 & \\
\hline
0 & -2 \\
\hline
1 & -6 \\
\hline
\end{tabular}

Use the drop-down menus to complete the statements:
1. The [tex]\( x \)[/tex]-values are the [tex]$\square$[/tex]
2. The [tex]\( y \)[/tex]-values are the [tex]$\square$[/tex]
3. The missing value in the table for [tex]\( x = -1 \)[/tex] is [tex]\( y = \)[/tex] [tex]$\square$[/tex]



Answer :

Let's analyze and complete the statements step-by-step based on the given equation [tex]\( y = 2 - 4x \)[/tex] and the table.

1. The [tex]$x$[/tex]-values are listed in the left column of the table:
- -2
- -1
- 0
- 1

Therefore, the [tex]$x$[/tex]-values are the first values of each row (column).

2. The [tex]$y$[/tex]-values are listed in the right column of the table:
- 10 (for [tex]\( x = -2 \)[/tex])
- ? (for [tex]\( x = -1 \)[/tex])
- -2 (for [tex]\( x = 0 \)[/tex])
- -6 (for [tex]\( x = 1 \)[/tex])

Therefore, the [tex]$y$[/tex]-values are the second values of each row (column).

3. Now, we need to find the missing [tex]$y$[/tex]-value for [tex]\( x = -1 \)[/tex]. According to the equation [tex]\( y = 2 - 4x \)[/tex]:
- For [tex]\( x = -1 \)[/tex], substitute -1 into the equation for [tex]\( x \)[/tex]:
[tex]\[ y = 2 - 4(-1) \][/tex]

- Simplify the equation:
[tex]\[ y = 2 + 4 = 6 \][/tex]

Therefore, the missing value in the table for [tex]\( x = -1 \)[/tex] is [tex]\( y = 6 \)[/tex].

Thus, we can complete the statements as follows:
- The [tex]$x$[/tex]-values are the first values of each row (column).
- The [tex]$y$[/tex]-values are the second values of each row (column).
- The missing value in the table for [tex]\( x = -1 \)[/tex] is [tex]\( y = 6 \)[/tex].