Answer :
Certainly! Let's break down the given problem step-by-step:
1. Evaluate the expression [tex]\(3x - 2\)[/tex] when [tex]\(x = 1\)[/tex]:
[tex]\[ 3 \times 1 - 2 = 3 - 2 = 1 \][/tex]
So, the value of [tex]\(3x - 2\)[/tex] when [tex]\(x = 1\)[/tex] is 1.
2. Evaluate the expression [tex]\(2x - 14\)[/tex] when [tex]\(x = 1\)[/tex]:
[tex]\[ 2 \times 1 - 14 = 2 - 14 = -12 \][/tex]
So, the value of [tex]\(2x - 14\)[/tex] when [tex]\(x = 1\)[/tex] is -12.
3. Evaluate the expression [tex]\(7x - 2\)[/tex] when [tex]\(x = 1\)[/tex]:
[tex]\[ 7 \times 1 - 2 = 7 - 2 = 5 \][/tex]
So, the value of [tex]\(7x - 2\)[/tex] when [tex]\(x = 1\)[/tex] is 5.
4. Evaluate the expression [tex]\(7 - (-14)\)[/tex]:
[tex]\[ 7 - (-14) = 7 + 14 = 21 \][/tex]
So, the value of [tex]\(7 - (-14)\)[/tex] is 21.
5. Multiply the result from [tex]\(7x - 2\)[/tex] by the result from [tex]\(7 - (-14)\)[/tex]:
[tex]\[ 5 \times 21 = 105 \][/tex]
So, the final result of the expression [tex]\( (7x - 2) \times (7 - (-14)) \)[/tex] when [tex]\(x = 1\)[/tex] is 105.
Summarizing all the results:
- The value of [tex]\(3x - 2\)[/tex] when [tex]\(x = 1\)[/tex] is 1.
- The value of [tex]\(2x - 14\)[/tex] when [tex]\(x = 1\)[/tex] is -12.
- The value of [tex]\(7x - 2\)[/tex] when [tex]\(x = 1\)[/tex] is 5.
- The value of [tex]\( (7x - 2) \times (7 - (-14)) \)[/tex] when [tex]\(x = 1\)[/tex] is 105.
Thus, the step-by-step solutions to the expressions and the final multiplication give us the results:
[tex]\[ (1, -12, 5, 105) \][/tex]
1. Evaluate the expression [tex]\(3x - 2\)[/tex] when [tex]\(x = 1\)[/tex]:
[tex]\[ 3 \times 1 - 2 = 3 - 2 = 1 \][/tex]
So, the value of [tex]\(3x - 2\)[/tex] when [tex]\(x = 1\)[/tex] is 1.
2. Evaluate the expression [tex]\(2x - 14\)[/tex] when [tex]\(x = 1\)[/tex]:
[tex]\[ 2 \times 1 - 14 = 2 - 14 = -12 \][/tex]
So, the value of [tex]\(2x - 14\)[/tex] when [tex]\(x = 1\)[/tex] is -12.
3. Evaluate the expression [tex]\(7x - 2\)[/tex] when [tex]\(x = 1\)[/tex]:
[tex]\[ 7 \times 1 - 2 = 7 - 2 = 5 \][/tex]
So, the value of [tex]\(7x - 2\)[/tex] when [tex]\(x = 1\)[/tex] is 5.
4. Evaluate the expression [tex]\(7 - (-14)\)[/tex]:
[tex]\[ 7 - (-14) = 7 + 14 = 21 \][/tex]
So, the value of [tex]\(7 - (-14)\)[/tex] is 21.
5. Multiply the result from [tex]\(7x - 2\)[/tex] by the result from [tex]\(7 - (-14)\)[/tex]:
[tex]\[ 5 \times 21 = 105 \][/tex]
So, the final result of the expression [tex]\( (7x - 2) \times (7 - (-14)) \)[/tex] when [tex]\(x = 1\)[/tex] is 105.
Summarizing all the results:
- The value of [tex]\(3x - 2\)[/tex] when [tex]\(x = 1\)[/tex] is 1.
- The value of [tex]\(2x - 14\)[/tex] when [tex]\(x = 1\)[/tex] is -12.
- The value of [tex]\(7x - 2\)[/tex] when [tex]\(x = 1\)[/tex] is 5.
- The value of [tex]\( (7x - 2) \times (7 - (-14)) \)[/tex] when [tex]\(x = 1\)[/tex] is 105.
Thus, the step-by-step solutions to the expressions and the final multiplication give us the results:
[tex]\[ (1, -12, 5, 105) \][/tex]