Calculating Average Velocity

| | Cart Speed (Low Fan Speed) (cm/s) | Cart Speed (Medium Fan Speed) (cm/s) | Cart Speed (High Fan Speed) (cm/s) |
|-----------------------|-----------------------------------|--------------------------------------|------------------------------------|
| Elapsed time to finish line (s) | 7.4 | 6.4 | 5.6 |
| Total distance (cm) | 500 | 500 | 500 |
| Average velocity (cm/s) | ? | ? | ? |



Answer :

Certainly! Let's calculate the average velocity for each fan speed step-by-step using the given data.

We are provided with the following information:
- Elapsed time to finish a distance of 500 cm.
- We need to find the average velocity for low, medium, and high fan speeds.

To find the average velocity, we can use the formula:

[tex]\[ \text{Average Velocity} = \frac{\text{Total Distance}}{\text{Time}} \][/tex]

Let's apply this formula to each fan speed.

### 1. Low Fan Speed

- Elapsed Time: 7.4 seconds
- Total Distance: 500 cm

Substitute the values into the formula:

[tex]\[ \text{Average Velocity (Low Fan Speed)} = \frac{500 \, \text{cm}}{7.4 \, \text{s}} \][/tex]

[tex]\[ \text{Average Velocity (Low Fan Speed)} \approx 67.57 \, \text{cm/s} \][/tex]

### 2. Medium Fan Speed

- Elapsed Time: 6.4 seconds
- Total Distance: 500 cm

Substitute the values into the formula:

[tex]\[ \text{Average Velocity (Medium Fan Speed)} = \frac{500 \, \text{cm}}{6.4 \, \text{s}} \][/tex]

[tex]\[ \text{Average Velocity (Medium Fan Speed)} \approx 78.13 \, \text{cm/s} \][/tex]

### 3. High Fan Speed

- Elapsed Time: 5.6 seconds
- Total Distance: 500 cm

Substitute the values into the formula:

[tex]\[ \text{Average Velocity (High Fan Speed)} = \frac{500 \, \text{cm}}{5.6 \, \text{s}} \][/tex]

[tex]\[ \text{Average Velocity (High Fan Speed)} \approx 89.29 \, \text{cm/s} \][/tex]

Thus, the values for the average velocities in cm/s are:

[tex]\[ \approx 67.57 \, \text{cm/s}, \quad 78.13 \, \text{cm/s}, \quad 89.29 \, \text{cm/s} \][/tex]

These are the respective average velocities for low, medium, and high fan speeds.