A triangle has angles [tex]\( D \)[/tex], [tex]\( E \)[/tex], and [tex]\( F \)[/tex]. Which of the following could not be a set of angles?

A. [tex]\( m \angle D = 90^{\circ}, m \angle E = 45^{\circ}, m \angle F = 45^{\circ} \)[/tex]
B. [tex]\( m \angle D = 90^{\circ}, m \angle E = 46^{\circ}, m \angle F = 46^{\circ} \)[/tex]
C. [tex]\( m \angle D = 100^{\circ}, m \angle E = 50^{\circ}, m \angle F = 30^{\circ} \)[/tex]
D. [tex]\( m \angle D = 91^{\circ}, m \angle E = 47^{\circ}, m \angle F = 42^{\circ} \)[/tex]



Answer :

To determine which set of angles could not form a valid triangle, we need to check if the sum of the angles in each set equals [tex]\(180^\circ\)[/tex]. The sum of the interior angles of a triangle must always be [tex]\(180^\circ\)[/tex].

Let's evaluate each set:

### Set A
Angles:
[tex]\[ m \angle D = 90^\circ, \, m \angle E = 45^\circ, \, m \angle F = 45^\circ \][/tex]

Calculation:
[tex]\[ 90^\circ + 45^\circ + 45^\circ = 180^\circ \][/tex]

Since the sum is [tex]\(180^\circ\)[/tex], these angles could form a valid triangle.

### Set B
Angles:
[tex]\[ m \angle D = 90^\circ, \, m \angle E = 46^\circ, \, m \angle F = 46^\circ \][/tex]

Calculation:
[tex]\[ 90^\circ + 46^\circ + 46^\circ = 182^\circ \][/tex]

Since the sum is [tex]\(182^\circ\)[/tex], which is not [tex]\(180^\circ\)[/tex], these angles could not form a valid triangle.

### Set C
Angles:
[tex]\[ m \angle D = 100^\circ, \, m \angle E = 50^\circ, \, m \angle F = 30^\circ \][/tex]

Calculation:
[tex]\[ 100^\circ + 50^\circ + 30^\circ = 180^\circ \][/tex]

Since the sum is [tex]\(180^\circ\)[/tex], these angles could form a valid triangle.

### Set D
Angles:
[tex]\[ m \angle D = 91^\circ, \, m \angle E = 47^\circ, \, m \angle F = 42^\circ \][/tex]

Calculation:
[tex]\[ 91^\circ + 47^\circ + 42^\circ = 180^\circ \][/tex]

Since the sum is [tex]\(180^\circ\)[/tex], these angles could form a valid triangle.

### Conclusion
The set of angles that could not form a valid triangle is:

[tex]\[ \boxed{B} \][/tex]