Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar.

[tex]$\overleftrightarrow{AB}$[/tex] and [tex]$\overleftrightarrow{BC}$[/tex] form a right angle at their point of intersection, [tex]$B$[/tex].

If the coordinates of [tex]$A$[/tex] and [tex]$B$[/tex] are [tex]$(14,-1)$[/tex] and [tex]$(2,1)$[/tex], respectively:

- The [tex]$y$[/tex]-intercept of [tex]$\overleftrightarrow{AB}$[/tex] is [tex]$\square$[/tex]
- The equation of [tex]$\overleftrightarrow{BC}$[/tex] is [tex]$y=$[/tex] [tex]$\square$[/tex] [tex]$x+$[/tex] [tex]$\square$[/tex]

If the [tex]$y$[/tex]-coordinate of point [tex]$C$[/tex] is 13, its [tex]$x$[/tex]-coordinate is [tex]$\square$[/tex].



Answer :

Let's solve the problem step by step:

1. Finding the slope of line [tex]\( \overleftrightarrow{A B} \)[/tex]:

The coordinates of [tex]\( A \)[/tex] are [tex]\( A(14, -1) \)[/tex], and the coordinates of [tex]\( B \ ) are \( B(2, 1) \)[/tex].

The slope [tex]\( m \)[/tex] of the line passing through these points is given by the formula:

[tex]\[ \text{slope}_{AB} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{1 - (-1)}{2 - 14} = \frac{2}{-12} = -\frac{1}{6} \][/tex]

2. Finding the y-intercept of [tex]\( \overleftrightarrow{A B} \)[/tex]:

The equation of a line in slope-intercept form is [tex]\( y = mx + c \)[/tex]. We have the slope [tex]\( m = -\frac{1}{6} \)[/tex].

We use the coordinates of point [tex]\( B \)[/tex] (which are [tex]\( (2, 1) \)[/tex]) to find the y-intercept [tex]\( c \)[/tex]:

[tex]\[ y = -\frac{1}{6}x + c \][/tex]

Substituting [tex]\( x = 2 \)[/tex] and [tex]\( y = 1 \)[/tex]:

[tex]\[ 1 = -\frac{1}{6}(2) + c \implies 1 = -\frac{1}{3} + c \implies c = 1 + \frac{1}{3} = \frac{4}{3} \][/tex]

So, the y-intercept of [tex]\( \overleftrightarrow{A B} \)[/tex] is [tex]\( \frac{4}{3} \)[/tex].

3. Finding the equation of line [tex]\( \overleftrightarrow{B C} \)[/tex]:

Since [tex]\( \overleftrightarrow{A B} \)[/tex] and [tex]\( \overleftrightarrow{B C} \)[/tex] form a right angle at point [tex]\( B \)[/tex], the slope of [tex]\( \overleftrightarrow{B C} \)[/tex] will be the negative reciprocal of the slope of [tex]\( \overleftrightarrow{A B} \)[/tex]:

[tex]\[ \text{slope}_{BC} = -\frac{1}{\text{slope}_{AB}} = -\frac{1}{-\frac{1}{6}} = 6 \][/tex]

Using the slope-intercept formula [tex]\( y = mx + c \)[/tex], point [tex]\( B(2, 1) \)[/tex], and knowing the slope is 6:

[tex]\[ y = 6x + c \][/tex]

Substituting [tex]\( x = 2 \)[/tex] and [tex]\( y = 1 \)[/tex]:

[tex]\[ 1 = 6(2) + c \implies 1 = 12 + c \implies c = 1 - 12 = -11 \][/tex]

Therefore, the equation of [tex]\( \overleftrightarrow{B C} \)[/tex] is:

[tex]\[ y = 6x - 11 \][/tex]

4. Finding the x-coordinate of point [tex]\( C \)[/tex] where the y-coordinate is 13:

The equation of line [tex]\( \overleftrightarrow{B C} \)[/tex] is [tex]\( y = 6x - 11 \)[/tex]. We set [tex]\( y = 13 \)[/tex]:

[tex]\[ 13 = 6x - 11 \][/tex]

Solving for [tex]\( x \)[/tex]:

[tex]\[ 13 + 11 = 6x \implies 24 = 6x \implies x = \frac{24}{6} = 4 \][/tex]

Thus, we have:

- The y-intercept of [tex]\( \overleftrightarrow{A B} \)[/tex] is [tex]\( \frac{4}{3} \)[/tex].
- The equation of [tex]\( \overleftrightarrow{B C} \)[/tex] is [tex]\( y = 6x - 11 \)[/tex].
- The x-coordinate of point [tex]\( C \)[/tex] (where the y-coordinate is 13) is 4.

So, the filled-in boxes should be:

- y-intercept of [tex]\( \overleftrightarrow{A B} \)[/tex]: [tex]\( \frac{4}{3} \)[/tex]
- Equation of [tex]\( \overleftrightarrow{B C} \)[/tex]: [tex]\( y = 6x - 11 \)[/tex]
- x-coordinate of [tex]\( C \)[/tex]: 4