Triangle MNP is rotated -270° about the origin. Given the points:

- [tex]\( M (7, -2) \)[/tex]
- [tex]\( N (4, -3) \)[/tex]
- [tex]\( P (2, -1) \)[/tex]

What are the coordinates of the vertices of the image?

Enter your answers in the boxes:

[tex]\[
\begin{array}{l}
M \ (\square, \square) \\
N \ (\square, \square) \\
P \ (\square, \square)
\end{array}
\][/tex]



Answer :

To solve for the coordinates of the vertices of triangle [tex]\( MNP \)[/tex] after it has been rotated by [tex]\(-270^\circ\)[/tex] about the origin, we need to follow specific steps for rotational transformation. A [tex]\(-270^\circ\)[/tex] rotation is equivalent to a [tex]\(90^\circ\)[/tex] clockwise rotation.

The rule for rotating a point [tex]\((x, y)\)[/tex] by [tex]\(90^\circ\)[/tex] clockwise is:
[tex]\[ (x, y) \rightarrow (y, -x) \][/tex]

Now, let's apply this rule to each vertex of the triangle.

1. For vertex [tex]\( M(7, -2) \)[/tex]:
- The new coordinates will be obtained by swapping [tex]\( x \)[/tex] and [tex]\( y \)[/tex] and changing the sign of the new x-coordinate:
[tex]\[ M(7, -2) \rightarrow M'(-2, -7) \][/tex]

2. For vertex [tex]\( N(4, -3) \)[/tex]:
[tex]\[ N(4, -3) \rightarrow N'(-3, -4) \][/tex]

3. For vertex [tex]\( P(2, -1) \)[/tex]:
[tex]\[ P(2, -1) \rightarrow P'(-1, -2) \][/tex]

Thus, the coordinates of the vertices of the triangle after the [tex]\(-270^\circ\)[/tex] rotation are:

- Vertex [tex]\(M'\)[/tex] at [tex]\((-2, -7)\)[/tex]
- Vertex [tex]\(N'\)[/tex] at [tex]\((-3, -4)\)[/tex]
- Vertex [tex]\(P'\)[/tex] at [tex]\((-1, -2)\)[/tex]

So the final coordinates after rotation are:
[tex]\[ M (-2, -7) \\ N (-3, -4) \\ P (-1, -2) \][/tex]