Expand the following expression:
[tex]\( 5.2(23 - 3.62x) \)[/tex]

A. [tex]\( 119.6x - 18.824 \)[/tex]

B. [tex]\( 119.6 - 18.824x \)[/tex]

C. [tex]\( 18.824 + 119.6x \)[/tex]

D. [tex]\( 28.2 - 8.82x \)[/tex]



Answer :

To expand the expression [tex]\(5.2(23 - 3.62x)\)[/tex], we need to use the distributive property. The distributive property states that [tex]\(a(b + c) = ab + ac\)[/tex]. Applying this property, we distribute [tex]\(5.2\)[/tex] to both terms inside the parentheses:

1. Distribute [tex]\(5.2\)[/tex] to [tex]\(23\)[/tex]:
[tex]\[ 5.2 \cdot 23 = 119.6 \][/tex]

2. Distribute [tex]\(5.2\)[/tex] to [tex]\(-3.62x\)[/tex]:
[tex]\[ 5.2 \cdot -3.62x = -18.824x \][/tex]

So, the expanded expression is:
[tex]\[ 119.6 - 18.824x \][/tex]

Therefore, the correct answer is:
[tex]\[ \text{B. } 119.6 - 18.824x \][/tex]