A power company calculates a person's monthly bill from the number of kilowatt-hours (kWh) used, [tex]\( x \)[/tex].

The function [tex]\( b(x) = \begin{cases}
0.15x & \text{if } x \leq 200 \\
0.10(x - 200) + 30 & \text{if } x \ \textgreater \ 200
\end{cases} \)[/tex]

How much is the bill for a person who uses 300 kWh in a month?

A. \[tex]$60
B. \$[/tex]45
C. \[tex]$55
D. \$[/tex]40



Answer :

To calculate the bill for a person who uses 300 kWh in a month using the given piecewise function [tex]\( b(x) \)[/tex], let's walk through the steps.

1. Identify which part of the piecewise function to use:
- The given function is:
[tex]\[ b(x) = \begin{cases} 0.15x & \text{if } x \leq 200 \\ 0.10(x - 200) + 30 & \text{if } x > 200 \end{cases} \][/tex]
- Since [tex]\( x = 300 \)[/tex] kWh, which is greater than 200, we use the second part of the piecewise function: [tex]\( b(x) = 0.10(x - 200) + 30 \)[/tex].

2. Substitute [tex]\( x = 300 \)[/tex] into the appropriate part of the function:
[tex]\[ b(300) = 0.10(300 - 200) + 30 \][/tex]

3. Simplify the expression inside the parentheses first:
[tex]\[ b(300) = 0.10(100) + 30 \][/tex]

4. Perform the multiplication:
[tex]\[ b(300) = 10 + 30 \][/tex]

5. Add the results to find the final bill amount:
[tex]\[ b(300) = 40 \][/tex]

Therefore, the bill for a person who uses 300 kWh in a month is [tex]\( \$40 \)[/tex]. So, the correct answer is:

D. \$40