Answer :
To determine which system can be used to find the lengths of the legs of the sun shade, let's analyze each option step-by-step.
Given the equation:
[tex]\[ \frac{1}{2} x^2 = 64 \][/tex]
We need to check each system of equations provided to see which one matches this given equation.
Option 1:
[tex]\[ y = \frac{1}{2} x^2 + 64 \][/tex]
and
[tex]\[ y = 0 \][/tex]
- Substituting [tex]\(y = 0\)[/tex] into the first equation:
[tex]\[ 0 = \frac{1}{2} x^2 + 64 \][/tex]
[tex]\[ \frac{1}{2} x^2 = -64 \][/tex]
This results in:
[tex]\[ x^2 = -128 \][/tex]
This is not correct since the right-hand side should be 64, not -64.
Option 2:
[tex]\[ y = \frac{1}{2} x^2 \][/tex]
and
[tex]\[ y = 64 \][/tex]
- Substituting [tex]\(y = 64\)[/tex] into the first equation:
[tex]\[ 64 = \frac{1}{2} x^2 \][/tex]
Solving for [tex]\(x^2\)[/tex]:
[tex]\[ \frac{1}{2} x^2 = 64 \][/tex]
This directly matches the given equation:
[tex]\[ x^2 = 128 \][/tex]
Thus, [tex]\(x\)[/tex] will lead us to the lengths of the legs of the sun shade when solved correctly.
Option 3:
[tex]\[ y = \frac{1}{2} x^2 + 64 \][/tex]
and
[tex]\[ y = \frac{1}{2} x^2 - 64 \][/tex]
- These two equations represent different and additional terms, as follows:
1. [tex]\(y = \frac{1}{2} x^2 + 64\)[/tex]
2. [tex]\(y = \frac{1}{2} x^2 - 64\)[/tex]
Setting these equal would result in:
[tex]\[ \frac{1}{2} x^2 + 64 = \frac{1}{2} x^2 - 64 \][/tex]
[tex]\[ 64 = -64 \][/tex]
This is a contradiction and does not match the given equation.
From the analysis, Option 2,
[tex]\[ y = \frac{1}{2} x^2 \][/tex]
and
[tex]\[ y = 64 \][/tex]
is the correct system that can be used to find the lengths of the legs of the sun shade.
Given the equation:
[tex]\[ \frac{1}{2} x^2 = 64 \][/tex]
We need to check each system of equations provided to see which one matches this given equation.
Option 1:
[tex]\[ y = \frac{1}{2} x^2 + 64 \][/tex]
and
[tex]\[ y = 0 \][/tex]
- Substituting [tex]\(y = 0\)[/tex] into the first equation:
[tex]\[ 0 = \frac{1}{2} x^2 + 64 \][/tex]
[tex]\[ \frac{1}{2} x^2 = -64 \][/tex]
This results in:
[tex]\[ x^2 = -128 \][/tex]
This is not correct since the right-hand side should be 64, not -64.
Option 2:
[tex]\[ y = \frac{1}{2} x^2 \][/tex]
and
[tex]\[ y = 64 \][/tex]
- Substituting [tex]\(y = 64\)[/tex] into the first equation:
[tex]\[ 64 = \frac{1}{2} x^2 \][/tex]
Solving for [tex]\(x^2\)[/tex]:
[tex]\[ \frac{1}{2} x^2 = 64 \][/tex]
This directly matches the given equation:
[tex]\[ x^2 = 128 \][/tex]
Thus, [tex]\(x\)[/tex] will lead us to the lengths of the legs of the sun shade when solved correctly.
Option 3:
[tex]\[ y = \frac{1}{2} x^2 + 64 \][/tex]
and
[tex]\[ y = \frac{1}{2} x^2 - 64 \][/tex]
- These two equations represent different and additional terms, as follows:
1. [tex]\(y = \frac{1}{2} x^2 + 64\)[/tex]
2. [tex]\(y = \frac{1}{2} x^2 - 64\)[/tex]
Setting these equal would result in:
[tex]\[ \frac{1}{2} x^2 + 64 = \frac{1}{2} x^2 - 64 \][/tex]
[tex]\[ 64 = -64 \][/tex]
This is a contradiction and does not match the given equation.
From the analysis, Option 2,
[tex]\[ y = \frac{1}{2} x^2 \][/tex]
and
[tex]\[ y = 64 \][/tex]
is the correct system that can be used to find the lengths of the legs of the sun shade.