Which of these groups of values plugged into the TVM Solver of a graphing calculator will return the same value for [tex]\( PV \)[/tex] as the expression

[tex]\[
\frac{(5505)\left((1+0.004)^{100}-1\right)}{(0.004)(1+0.004)^{10}} ?
\][/tex]

A. [tex]\( N=5 \)[/tex] ; [tex]\( I\% = 4.8 \)[/tex] ; [tex]\( PV = \)[/tex] ; [tex]\( PMT = -505 \)[/tex] ; [tex]\( FV = 0 \)[/tex] ; [tex]\( P/Y = 12 \)[/tex] ; [tex]\( C/Y = 12 \)[/tex] ; [tex]\( PMT: END \)[/tex]

B. [tex]\( N = 60 \)[/tex] ; [tex]\( I\% = 4.8 \)[/tex] ; [tex]\( PV = \)[/tex] ; [tex]\( PMT = -505 \)[/tex] ; [tex]\( FV = 0 \)[/tex] ; [tex]\( P/Y = 12 \)[/tex] ; [tex]\( C/Y = 12 \)[/tex] ; [tex]\( PMT: END \)[/tex]

C. [tex]\( N = 5 \)[/tex] ; [tex]\( I\% = 0.4 \)[/tex] ; [tex]\( PV = \)[/tex] ; [tex]\( PMT = -505 \)[/tex] ; [tex]\( FV = 0 \)[/tex] ; [tex]\( P/Y = 12 \)[/tex] ; [tex]\( C/Y = 12 \)[/tex] ; [tex]\( PMT: END \)[/tex]

D. [tex]\( N = 60 \)[/tex] ; [tex]\( I\% = 0.4 \)[/tex] ; [tex]\( PV = \)[/tex] ; [tex]\( PMT = -505 \)[/tex] ; [tex]\( FV = 0 \)[/tex] ; [tex]\( P/Y = 12 \)[/tex] ; [tex]\( C/Y = 12 \)[/tex] ; [tex]\( PMT: END \)[/tex]



Answer :

To determine which group of values, when plugged into the TVM Solver of a graphing calculator, would return the same present value (PV) as the given expression
[tex]\[ PV = \frac{5505 \left((1 + 0.004)^{100} - 1\right)}{0.004 \cdot (1 + 0.004)^{100}}, \][/tex]
we need to evaluate each set of values provided in the options using the TVM (Time Value of Money) formula. However, the result from our calculations show that none of the provided options A, B, C, or D match the given PV expression.

Given this, none of the provided answers correctly match the provided PV expression.