Write a polynomial in standard form that fits the given description.

1. The only roots are [tex]\(x = 3, -2\)[/tex], and 1.

2. The only roots are [tex]\(x = 5\)[/tex] (multiplicity 1) and [tex]\(-4\)[/tex] (multiplicity 2).



Answer :

To construct a polynomial in standard form given its roots, we need to utilize the fact that if [tex]\( r \)[/tex] is a root of the polynomial, then [tex]\( (x - r) \)[/tex] is a factor of the polynomial. The polynomial is the product of these factors.

Given the roots [tex]\( x = 5 \)[/tex] with multiplicity 1 and [tex]\( x = -4 \)[/tex] with multiplicity 2, we construct the polynomial as follows:

### Step-by-Step Solution

1. Identify the Factors:
- For the root [tex]\( x = 5 \)[/tex]: the factor is [tex]\( (x - 5) \)[/tex]
- For the root [tex]\( x = -4 \)[/tex] with multiplicity 2: the factor is [tex]\( (x + 4) \)[/tex] but raised to the power of 2 to account for the multiplicity. Thus, the factor is [tex]\( (x + 4)^2 \)[/tex].

2. Write the Polynomial as a Product of Factors:
[tex]\[ P(x) = (x - 5)(x + 4)^2 \][/tex]

3. Expand the Polynomial:
First, expand [tex]\( (x + 4)^2 \)[/tex]:
[tex]\[ (x + 4)^2 = (x + 4)(x + 4) = x^2 + 8x + 16 \][/tex]

Now, multiply this result by [tex]\( (x - 5) \)[/tex]:
[tex]\[ P(x) = (x - 5)(x^2 + 8x + 16) \][/tex]

4. Distribute [tex]\( (x - 5) \)[/tex] across [tex]\( (x^2 + 8x + 16) \)[/tex]:
[tex]\[ P(x) = x(x^2 + 8x + 16) - 5(x^2 + 8x + 16) \][/tex]

Let's distribute [tex]\( x \)[/tex]:
[tex]\[ x(x^2 + 8x + 16) = x^3 + 8x^2 + 16x \][/tex]

Now, distribute [tex]\( -5 \)[/tex]:
[tex]\[ -5(x^2 + 8x + 16) = -5x^2 - 40x - 80 \][/tex]

Combine the two results together:
[tex]\[ P(x) = x^3 + 8x^2 + 16x - 5x^2 - 40x - 80 \][/tex]

5. Combine Like Terms:
[tex]\[ P(x) = x^3 + 3x^2 - 24x - 80 \][/tex]

### The Polynomial in Standard Form:
[tex]\[ P(x) = x^3 + 3x^2 - 24x - 80 \][/tex]

Thus, the polynomial that fits the given roots and their multiplicities is:

- [tex]\( x = 5 \)[/tex] (multiplicity 1)
- [tex]\( x = -4 \)[/tex] (multiplicity 2)

is

[tex]\[ \boxed{x^3 + 3x^2 - 24x - 80} \][/tex]