Given:
[tex]\(\triangle JKL\)[/tex] with [tex]\(j = 7\)[/tex], [tex]\(k = 11\)[/tex], and [tex]\(m \angle J = 18^{\circ}\)[/tex].

Complete the statements to determine all possible measures of angle [tex]\(K\)[/tex]:

1. Triangle JKL meets the [tex]\(\square\)[/tex] criteria, indicating the ambiguous case.

2. Substitute the known values into the law of sines:
[tex]\[
\frac{\sin(18^\circ)}{7} = \frac{\sin(K)}{11}
\][/tex]

3. Cross-multiply:
[tex]\[
11 \sin(18^\circ) = \square
\][/tex]

4. Solve for the measure of angle [tex]\(K\)[/tex] using a calculator:
[tex]\[
m \angle K \approx \square^\circ
\][/tex]
(Round to the nearest degree.)

5. Because this is the ambiguous case, the measure of angle [tex]\(K\)[/tex] could also be:
[tex]\[
\square
\][/tex]



Answer :

To solve this problem step by step:

[tex]$\triangle JKL$[/tex] has [tex]\( j = 7 \)[/tex], [tex]\( k = 11 \)[/tex], and [tex]\( m \angle J = 18^\circ \)[/tex]. We need to determine the possible measures of angle [tex]\( K \)[/tex].

1. Identify the ambiguous case:
Triangle JKL meets the SSA (Side-Side-Angle) criteria, which means it is the ambiguous case.

2. Substitute the known values into the Law of Sines:

[tex]\[ \frac{\sin(18^\circ)}{7} = \frac{\sin(K)}{11} \][/tex]

3. Cross multiply:

[tex]\[ 11 \sin(18^\circ) = 7 \sin(K) \][/tex]

4. Substitute [tex]\( \sin(18^\circ) \approx 0.309 \)[/tex]:

[tex]\[ 11 \times 0.309 \approx 3.399 \][/tex]

5. Solve for [tex]\( \sin(K) \)[/tex]:

[tex]\[ 7 \sin(K) \approx 3.399 \][/tex]

[tex]\[ \sin(K) \approx \frac{3.399}{7} \approx 0.486 \][/tex]

6. Find [tex]\( K \)[/tex] using the inverse sine function:

[tex]\[ K \approx \arcsin(0.486) \][/tex]

Using a calculator:

[tex]\[ K \approx 29^\circ \][/tex]

However, because this is the ambiguous case, we also need to consider the supplementary angle, which is:

[tex]\[ 180^\circ - 29^\circ = 151^\circ \][/tex]

Therefore, the possible measures of angle [tex]\( K \)[/tex], rounded to the nearest degree, are 29° and 151° respectively.

7. Complete the given statements:

Triangle JKL meets the SSA (Side-Side-Angle) criteria, which means it is the ambiguous case.

Substitute the known values into the law of sines:

[tex]\[ \frac{\sin(18^\circ)}{7} = \frac{\sin(K)}{11} \][/tex]

Cross multiply:

[tex]\[ 11 \sin(18^\circ) = 3.399 \][/tex]

Solve for the measure of angle [tex]\( K \)[/tex], and use a calculator to determine the value.

Round to the nearest degree:

[tex]\[ m \angle K \approx 29^\circ \][/tex]

However, because this is the ambiguous case, the measure of angle [tex]\( K \)[/tex] could also be:

[tex]\[ 151^\circ \][/tex]