Simplify: [tex]\(\frac{4x^2 + 36}{4x} \cdot \frac{1}{5x}\)[/tex]

A. [tex]\(6(x + 2)\)[/tex]
B. [tex]\(x + 3\)[/tex]
C. [tex]\(\frac{x^2 + 9}{5x^2}\)[/tex]
D. [tex]\(\frac{x - 8}{x + 1}\)[/tex]



Answer :

To simplify the expression [tex]\(\frac{4 x^2 + 36}{4 x} \cdot \frac{1}{5 x}\)[/tex], follow these steps:

1. Factor and Simplify the First Fraction:

[tex]\[ \frac{4 x^2 + 36}{4 x} \][/tex]

Notice that [tex]\(4 x^2 + 36\)[/tex] can be factored:

[tex]\[ 4 x^2 + 36 = 4(x^2 + 9) \][/tex]

So, we have:

[tex]\[ \frac{4(x^2 + 9)}{4 x} \][/tex]

Simplify the fraction by canceling the common factor of [tex]\(4\)[/tex]:

[tex]\[ \frac{x^2 + 9}{x} \][/tex]

2. Multiply by the Second Fraction:

Now we need to multiply [tex]\(\frac{x^2 + 9}{x}\)[/tex] by [tex]\(\frac{1}{5 x}\)[/tex]:

[tex]\[ \frac{x^2 + 9}{x} \cdot \frac{1}{5 x} \][/tex]

3. Combine the Fractions:

When multiplying fractions, multiply the numerators together and the denominators together:

[tex]\[ \frac{(x^2 + 9) \cdot 1}{x \cdot 5 x} = \frac{x^2 + 9}{5 x^2} \][/tex]

Therefore, the simplified form of the expression [tex]\(\frac{4 x^2 + 36}{4 x} \cdot \frac{1}{5 x}\)[/tex] is:

[tex]\[ \boxed{\frac{x^2 + 9}{5 x^2}} \][/tex]

Given the multiple choice options, the correct answer is:

C. [tex]\(\frac{x^2 + 9}{5 x^2}\)[/tex]