Use the work shown below to find the simplified product:

[tex]\[\frac{25x^2}{2(x+3)} \cdot \frac{2}{5x}\][/tex]

Choose the simplified product:

A. [tex]\[\frac{1}{x+3}\][/tex]

B. [tex]\[\frac{2}{x+3}\][/tex]

C. [tex]\[\frac{5x}{x+3}\][/tex]

D. [tex]\[\frac{10x}{x+3}\][/tex]



Answer :

Sure, let's work through the problem step-by-step to find the simplified product of the given fractions.

### Given Expression

First, let's write down the given fractions:

1. [tex]\(\frac{25 x^2}{2(x + 3)}\)[/tex]
2. [tex]\(\frac{2}{5x}\)[/tex]

### Step-by-Step Solution

#### Step 1: Write the product of the fractions

We write the product of the two fractions by multiplying their numerators together and their denominators together:
[tex]\[ \frac{25 x^2}{2(x + 3)} \cdot \frac{2}{5 x} \][/tex]

#### Step 2: Multiply the numerators

Multiply the numerators of both fractions:
[tex]\[ 25 x^2 \cdot 2 = 50 x^2 \][/tex]

#### Step 3: Multiply the denominators

Multiply the denominators of both fractions:
[tex]\[ 2(x + 3) \cdot 5x = 10x(x + 3) \][/tex]

#### Step 4: Combine the products

Now, our fraction becomes:
[tex]\[ \frac{50 x^2}{10 x (x + 3)} \][/tex]

#### Step 5: Simplify the fraction

We can simplify the fraction by canceling out common factors in the numerator and denominator. Notice that [tex]\(50 x^2\)[/tex] and [tex]\(10 x\)[/tex] share a common factor of [tex]\(10 x\)[/tex]:
[tex]\[ \frac{50 x^2}{10 x (x + 3)} = \frac{50 x^2}{10 x (x + 3)} = \frac{5x}{x + 3} \][/tex]

So, the simplified product is:
[tex]\[ \frac{5 x}{x + 3} \][/tex]

### Final Answer

From the given choices:
- [tex]\(\frac{1}{x+3}\)[/tex]
- [tex]\(\frac{2}{x+3}\)[/tex]
- [tex]\(\frac{5 x}{x+3}\)[/tex]
- [tex]\(\frac{10 x}{x+3}\)[/tex]

The correct simplified product is:

[tex]\[ \boxed{\frac{5 x}{x + 3}} \][/tex]