To find the length of the altitude of an equilateral triangle with a side length of 8 units, we use the following steps:
1. Recall the formula for the altitude [tex]\( h \)[/tex] of an equilateral triangle with side length [tex]\( a \)[/tex]:
[tex]\[
h = \frac{a \sqrt{3}}{2}
\][/tex]
2. Substitute the given side length [tex]\( a = 8 \)[/tex] units into the formula:
[tex]\[
h = \frac{8 \sqrt{3}}{2}
\][/tex]
3. Simplify the expression:
[tex]\[
h = 4 \sqrt{3}
\][/tex]
Therefore, the altitude of the equilateral triangle with a side length of 8 units is [tex]\( 4 \sqrt{3} \)[/tex] units.
So, the correct answer is:
[tex]\[ 4 \sqrt{3} \text{ units} \][/tex]