Answer :
To calculate the average velocity of the car, we need to follow these steps for each segment of the journey:
1. Calculate the average time for each segment:
First, for the distance of [tex]\(0.25 \, m\)[/tex]:
- Trial 1: [tex]\(2.24 \, s\)[/tex]
- Trial 2: [tex]\(2.21 \, s\)[/tex]
- Trial 3: [tex]\(2.23 \, s\)[/tex]
To find the average time, sum the times and divide by the number of trials:
[tex]\[ \text{Average time for first } 0.25 \, m = \frac{2.24 + 2.21 + 2.23}{3} = 2.2266666666666666 \, s \][/tex]
Next, for the distance from [tex]\(0.25 \, m\)[/tex] to [tex]\(0.50 \, m\)[/tex] (i.e., the second [tex]\(0.25 \, m\)[/tex]):
- Trial 1: [tex]\(3.16 \, s\)[/tex]
- Trial 2: [tex]\(3.08 \, s\)[/tex]
- Trial 3: [tex]\(3.15 \, s\)[/tex]
To find the average time, sum the times and divide by the number of trials:
[tex]\[ \text{Average time for second } 0.25 \, m = \frac{3.16 + 3.08 + 3.15}{3} = 3.1300000000000003 \, s \][/tex]
2. Calculate the average velocity for each segment:
The formula for average velocity is given by:
[tex]\[ \text{Average velocity} = \frac{\text{distance}}{\text{time}} \][/tex]
For the first [tex]\(0.25 \, m\)[/tex]:
[tex]\[ \text{Average velocity for first } 0.25 \, m = \frac{0.25 \, m}{2.2266666666666666 \, s} = 0.11227544910179642 \, m/s \][/tex]
For the second [tex]\(0.25 \, m\)[/tex]:
[tex]\[ \text{Average velocity for second } 0.25 \, m = \frac{0.25 \, m}{3.1300000000000003 \, s} = 0.07987220447284345 \, m/s \][/tex]
3. Provide the final answers:
- The average velocity of the car over the first [tex]\(0.25 \, m\)[/tex] is [tex]\(0.112 \, m/s\)[/tex] (rounded to three decimal places).
- The average velocity of the car over the second [tex]\(0.25 \, m\)[/tex] is [tex]\(0.080 \, m/s\)[/tex] (rounded to three decimal places).
1. Calculate the average time for each segment:
First, for the distance of [tex]\(0.25 \, m\)[/tex]:
- Trial 1: [tex]\(2.24 \, s\)[/tex]
- Trial 2: [tex]\(2.21 \, s\)[/tex]
- Trial 3: [tex]\(2.23 \, s\)[/tex]
To find the average time, sum the times and divide by the number of trials:
[tex]\[ \text{Average time for first } 0.25 \, m = \frac{2.24 + 2.21 + 2.23}{3} = 2.2266666666666666 \, s \][/tex]
Next, for the distance from [tex]\(0.25 \, m\)[/tex] to [tex]\(0.50 \, m\)[/tex] (i.e., the second [tex]\(0.25 \, m\)[/tex]):
- Trial 1: [tex]\(3.16 \, s\)[/tex]
- Trial 2: [tex]\(3.08 \, s\)[/tex]
- Trial 3: [tex]\(3.15 \, s\)[/tex]
To find the average time, sum the times and divide by the number of trials:
[tex]\[ \text{Average time for second } 0.25 \, m = \frac{3.16 + 3.08 + 3.15}{3} = 3.1300000000000003 \, s \][/tex]
2. Calculate the average velocity for each segment:
The formula for average velocity is given by:
[tex]\[ \text{Average velocity} = \frac{\text{distance}}{\text{time}} \][/tex]
For the first [tex]\(0.25 \, m\)[/tex]:
[tex]\[ \text{Average velocity for first } 0.25 \, m = \frac{0.25 \, m}{2.2266666666666666 \, s} = 0.11227544910179642 \, m/s \][/tex]
For the second [tex]\(0.25 \, m\)[/tex]:
[tex]\[ \text{Average velocity for second } 0.25 \, m = \frac{0.25 \, m}{3.1300000000000003 \, s} = 0.07987220447284345 \, m/s \][/tex]
3. Provide the final answers:
- The average velocity of the car over the first [tex]\(0.25 \, m\)[/tex] is [tex]\(0.112 \, m/s\)[/tex] (rounded to three decimal places).
- The average velocity of the car over the second [tex]\(0.25 \, m\)[/tex] is [tex]\(0.080 \, m/s\)[/tex] (rounded to three decimal places).