We start with the given equation:
[tex]\[ J \div 24 = K \][/tex]
which can also be written as:
[tex]\[ \frac{J}{24} = K \][/tex]
To find [tex]\( J \div 6 \)[/tex] in terms of [tex]\( K \)[/tex], we need to express [tex]\( J \)[/tex] in a different form. Starting from the given equation, isolate [tex]\( J \)[/tex]:
[tex]\[ J = 24K \][/tex]
Now, substitute [tex]\( J = 24K \)[/tex] into the expression [tex]\( J \div 6 \)[/tex]:
[tex]\[ J \div 6 = \frac{J}{6} \][/tex]
[tex]\[ \frac{24K}{6} \][/tex]
Simplify the fraction:
[tex]\[ \frac{24K}{6} = 4K \][/tex]
Thus, [tex]\( J \div 6 = 4K \)[/tex].
So, the correct answer is:
F. [tex]\( 4K \)[/tex]