If [tex]\( J \div 24 = K \)[/tex], then [tex]\( J \div 6 = \)[/tex]

A. [tex]\( 4K \)[/tex]
B. [tex]\( 2K \)[/tex]
C. [tex]\( K \)[/tex]
D. [tex]\( K / 2 \)[/tex]
E. [tex]\( K / 4 \)[/tex]



Answer :

We start with the given equation:
[tex]\[ J \div 24 = K \][/tex]
which can also be written as:
[tex]\[ \frac{J}{24} = K \][/tex]

To find [tex]\( J \div 6 \)[/tex] in terms of [tex]\( K \)[/tex], we need to express [tex]\( J \)[/tex] in a different form. Starting from the given equation, isolate [tex]\( J \)[/tex]:
[tex]\[ J = 24K \][/tex]

Now, substitute [tex]\( J = 24K \)[/tex] into the expression [tex]\( J \div 6 \)[/tex]:
[tex]\[ J \div 6 = \frac{J}{6} \][/tex]
[tex]\[ \frac{24K}{6} \][/tex]

Simplify the fraction:
[tex]\[ \frac{24K}{6} = 4K \][/tex]

Thus, [tex]\( J \div 6 = 4K \)[/tex].

So, the correct answer is:
F. [tex]\( 4K \)[/tex]