What is [tex]\( X \)[/tex] if [tex]\(\left[\begin{array}{cc}-1 & -2 \\ 4 & 8\end{array}\right] + X = \left[\begin{array}{cc}-5 & -1 \\ 2 & 1\end{array}\right] \)[/tex]?

A. [tex]\(\left[\begin{array}{cc}-6 & -3 \\ 6 & 9\end{array}\right]\)[/tex]

B. [tex]\(\left[\begin{array}{cc}-6 & -3 \\ -2 & -7\end{array}\right]\)[/tex]

C. [tex]\(\left[\begin{array}{cc}-4 & 1 \\ -2 & -7\end{array}\right]\)[/tex]

D. [tex]\(\left[\begin{array}{cc}4 & -1 \\ 2 & 7\end{array}\right]\)[/tex]



Answer :

To solve the equation [tex]\(\left[\begin{array}{cc}-1 & -2 \\ 4 & 8\end{array}\right]+X=\left[\begin{array}{cc}-5 & -1 \\ 2 & 1\end{array}\right]\)[/tex], we can follow these steps:

1. Subtract the given matrix [tex]\(\left[\begin{array}{cc}-1 & -2 \\ 4 & 8\end{array}\right]\)[/tex] from both sides of the equation to isolate [tex]\(X\)[/tex]:

[tex]\[ X = \left[\begin{array}{cc}-5 & -1 \\ 2 & 1\end{array}\right] - \left[\begin{array}{cc}-1 & -2 \\ 4 & 8\end{array}\right] \][/tex]

2. Subtract corresponding elements of the matrices:

[tex]\[ X = \left[\begin{array}{cc} (-5 - (-1)) & (-1 - (-2)) \\ (2 - 4) & (1 - 8) \end{array}\right] \][/tex]

3. Simplify the elements:

[tex]\[ X = \left[\begin{array}{cc} (-5 + 1) & (-1 + 2) \\ (2 - 4) & (1 - 8) \end{array}\right] = \left[\begin{array}{cc} -4 & 1 \\ -2 & -7 \end{array}\right] \][/tex]

Hence, the value of [tex]\(X\)[/tex] is:

[tex]\[ \left[\begin{array}{cc}-4 & 1 \\ -2 & -7\end{array}\right] \][/tex]

So, the correct answer is:

[tex]\[ \left[\begin{array}{cc}-4 & 1 \\ -2 & -7\end{array}\right] \][/tex]