Given
[tex]\[ A=\begin{bmatrix}-1 & -2 & 3 \\ 4 & 8 & -6 \\ 0 & 1 & 5\end{bmatrix} \][/tex]
and
[tex]\[ B=\begin{bmatrix}-5 & -1 & 6 \\ 4 & 1 & 2 \\ 0 & -3 & 2\end{bmatrix} \][/tex]

What is [tex]\( X \)[/tex] if [tex]\( B - X = A \)[/tex]?

A. [tex]\[ \begin{bmatrix}4 & -1 & -3 \\ 0 & 7 & -8 \\ 0 & 4 & 3\end{bmatrix} \][/tex]

B. [tex]\[ \begin{bmatrix}-4 & 1 & 3 \\ 0 & -7 & 8 \\ 0 & -4 & -3\end{bmatrix} \][/tex]

C. [tex]\[ \begin{vmatrix}-8 & -3 & 9 \\ 8 & 9 & -4\end{vmatrix} \][/tex]



Answer :

To solve for the matrix [tex]\( X \)[/tex] such that [tex]\( B - X = A \)[/tex], we rearrange the equation to solve for [tex]\( X \)[/tex]:

[tex]\[ X = B - A \][/tex]

Given the matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:

[tex]\[ A = \begin{pmatrix} -1 & -2 & 3 \\ 4 & 8 & -6 \\ 0 & 1 & 5 \end{pmatrix} \][/tex]

[tex]\[ B = \begin{pmatrix} -5 & -1 & 6 \\ 4 & 1 & 2 \\ 0 & -3 & 2 \end{pmatrix} \][/tex]

We perform the matrix subtraction element-wise:

[tex]\[ X = B - A \][/tex]

[tex]\[ X = \begin{pmatrix} -5 & -1 & 6 \\ 4 & 1 & 2 \\ 0 & -3 & 2 \end{pmatrix} - \begin{pmatrix} -1 & -2 & 3 \\ 4 & 8 & -6 \\ 0 & 1 & 5 \end{pmatrix} \][/tex]

Now, subtract each corresponding element:

For the first row:
[tex]\[ \begin{pmatrix} -5 - (-1) & -1 - (-2) & 6 - 3 \end{pmatrix} = \begin{pmatrix} -4 & 1 & 3 \end{pmatrix} \][/tex]

For the second row:
[tex]\[ \begin{pmatrix} 4 - 4 & 1 - 8 & 2 - (-6) \end{pmatrix} = \begin{pmatrix} 0 & -7 & 8 \end{pmatrix} \][/tex]

For the third row:
[tex]\[ \begin{pmatrix} 0 - 0 & -3 - 1 & 2 - 5 \end{pmatrix} = \begin{pmatrix} 0 & -4 & -3 \end{pmatrix} \][/tex]

Combining these results, we get the matrix [tex]\( X \)[/tex]:

[tex]\[ X = \begin{pmatrix} -4 & 1 & 3 \\ 0 & -7 & 8 \\ 0 & -4 & -3 \end{pmatrix} \][/tex]

Therefore, the correct option is:

[tex]\[ \begin{pmatrix} -4 & 1 & 3 \\ 0 & -7 & 8 \\ 0 & -4 & -3 \end{pmatrix} \][/tex]

So, the correct answer is:

[tex]\[ \left[\begin{array}{ccc}-4 & 1 & 3 \\ 0 & -7 & 8 \\ 0 & -4 & -3\end{array}\right] \][/tex]