Answer :
To determine which set of fractions is ordered from least to greatest, we need to convert each fraction to its decimal form and then compare these decimals. The fractions given are:
- [tex]\(\frac{5}{8}\)[/tex]
- [tex]\(\frac{8}{12}\)[/tex]
- [tex]\(\frac{3}{4}\)[/tex]
Let's convert each fraction into a decimal:
1. [tex]\(\frac{5}{8}\)[/tex]:
[tex]\[ \frac{5}{8} = 0.625 \][/tex]
2. [tex]\(\frac{8}{12}\)[/tex]:
[tex]\[ \frac{8}{12} = \frac{2}{3} \approx 0.6667 \][/tex]
3. [tex]\(\frac{3}{4}\)[/tex]:
[tex]\[ \frac{3}{4} = 0.75 \][/tex]
Now that we have converted these fractions into their decimal equivalents, we can compare the decimals:
- 0.625 ([tex]\(\frac{5}{8}\)[/tex])
- 0.6667 ([tex]\(\frac{8}{12}\)[/tex])
- 0.75 ([tex]\(\frac{3}{4}\)[/tex])
When ordered from least to greatest, the decimals are:
[tex]\[ 0.625, 0.6667, 0.75 \][/tex]
This order corresponds to the fractions:
[tex]\[ \frac{5}{8}, \frac{8}{12}, \frac{3}{4} \][/tex]
So the correct order of the fractions from least to greatest is:
A) [tex]\(\frac{5}{8}, \frac{8}{12}, \frac{3}{4}\)[/tex]
Therefore, the answer is:
[tex]\[ \boxed{A} \][/tex]
- [tex]\(\frac{5}{8}\)[/tex]
- [tex]\(\frac{8}{12}\)[/tex]
- [tex]\(\frac{3}{4}\)[/tex]
Let's convert each fraction into a decimal:
1. [tex]\(\frac{5}{8}\)[/tex]:
[tex]\[ \frac{5}{8} = 0.625 \][/tex]
2. [tex]\(\frac{8}{12}\)[/tex]:
[tex]\[ \frac{8}{12} = \frac{2}{3} \approx 0.6667 \][/tex]
3. [tex]\(\frac{3}{4}\)[/tex]:
[tex]\[ \frac{3}{4} = 0.75 \][/tex]
Now that we have converted these fractions into their decimal equivalents, we can compare the decimals:
- 0.625 ([tex]\(\frac{5}{8}\)[/tex])
- 0.6667 ([tex]\(\frac{8}{12}\)[/tex])
- 0.75 ([tex]\(\frac{3}{4}\)[/tex])
When ordered from least to greatest, the decimals are:
[tex]\[ 0.625, 0.6667, 0.75 \][/tex]
This order corresponds to the fractions:
[tex]\[ \frac{5}{8}, \frac{8}{12}, \frac{3}{4} \][/tex]
So the correct order of the fractions from least to greatest is:
A) [tex]\(\frac{5}{8}, \frac{8}{12}, \frac{3}{4}\)[/tex]
Therefore, the answer is:
[tex]\[ \boxed{A} \][/tex]