Which set of fractions is ordered from least to greatest?

A. [tex]\(\frac{5}{8}, \frac{8}{12}, \frac{3}{4}\)[/tex]

B. [tex]\(\frac{8}{12}, \frac{5}{8}, \frac{3}{4}\)[/tex]

C. [tex]\(\frac{3}{4}, \frac{5}{8}, \frac{8}{12}\)[/tex]

D. [tex]\(\frac{5}{8}, \frac{3}{4}, \frac{8}{12}\)[/tex]



Answer :

To determine which set of fractions is ordered from least to greatest, we need to convert each fraction to its decimal form and then compare these decimals. The fractions given are:

- [tex]\(\frac{5}{8}\)[/tex]
- [tex]\(\frac{8}{12}\)[/tex]
- [tex]\(\frac{3}{4}\)[/tex]

Let's convert each fraction into a decimal:

1. [tex]\(\frac{5}{8}\)[/tex]:
[tex]\[ \frac{5}{8} = 0.625 \][/tex]

2. [tex]\(\frac{8}{12}\)[/tex]:
[tex]\[ \frac{8}{12} = \frac{2}{3} \approx 0.6667 \][/tex]

3. [tex]\(\frac{3}{4}\)[/tex]:
[tex]\[ \frac{3}{4} = 0.75 \][/tex]

Now that we have converted these fractions into their decimal equivalents, we can compare the decimals:

- 0.625 ([tex]\(\frac{5}{8}\)[/tex])
- 0.6667 ([tex]\(\frac{8}{12}\)[/tex])
- 0.75 ([tex]\(\frac{3}{4}\)[/tex])

When ordered from least to greatest, the decimals are:

[tex]\[ 0.625, 0.6667, 0.75 \][/tex]

This order corresponds to the fractions:

[tex]\[ \frac{5}{8}, \frac{8}{12}, \frac{3}{4} \][/tex]

So the correct order of the fractions from least to greatest is:

A) [tex]\(\frac{5}{8}, \frac{8}{12}, \frac{3}{4}\)[/tex]

Therefore, the answer is:
[tex]\[ \boxed{A} \][/tex]