What is the product?

[tex]\((y^2 + 3y + 7)(8y^2 + y + 1)\)[/tex]

A. [tex]\(8y^4 + 24y^3 + 60y^2 + 10y + 7\)[/tex]
B. [tex]\(8y^4 + 25y^3 + 4y^2 + 10y + 7\)[/tex]
C. [tex]\(8y^4 + 25y^3 + 60y^2 + 7y + 7\)[/tex]
D. [tex]\(8y^4 + 25y^3 + 60y^2 + 10y + 7\)[/tex]



Answer :

Let's find the product [tex]\(\left(y^2 + 3y + 7 \right) \left(8y^2 + y + 1 \right)\)[/tex] step by step. We'll distribute each term in the first polynomial to every term in the second polynomial and then combine like terms.

1. Distribute [tex]\(y^2\)[/tex] in the first polynomial:
[tex]\[ y^2 \cdot (8y^2 + y + 1) = 8y^4 + y^3 + y^2 \][/tex]

2. Distribute [tex]\(3y\)[/tex] in the first polynomial:
[tex]\[ 3y \cdot (8y^2 + y + 1) = 24y^3 + 3y^2 + 3y \][/tex]

3. Distribute [tex]\(7\)[/tex] in the first polynomial:
[tex]\[ 7 \cdot (8y^2 + y + 1) = 56y^2 + 7y + 7 \][/tex]

Now, we combine all these products:

[tex]\[ (8y^4 + y^3 + y^2) + (24y^3 + 3y^2 + 3y) + (56y^2 + 7y + 7) \][/tex]

Next, we combine like terms:

- For [tex]\(y^4\)[/tex]:
[tex]\[ 8y^4 \][/tex]

- For [tex]\(y^3\)[/tex]:
[tex]\[ y^3 + 24y^3 = 25y^3 \][/tex]

- For [tex]\(y^2\)[/tex]:
[tex]\[ y^2 + 3y^2 + 56y^2 = 60y^2 \][/tex]

- For [tex]\(y\)[/tex]:
[tex]\[ 3y + 7y = 10y \][/tex]

- Constant term:
[tex]\[ 7 \][/tex]

So, the final product is:
[tex]\[ 8y^4 + 25y^3 + 60y^2 + 10y + 7 \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{8y^4 + 25y^3 + 60y^2 + 10y + 7} \][/tex]