Complete the point-slope equation of the line through [tex]\((-5, 7)\)[/tex] and [tex]\((-4, 0)\)[/tex].

Use exact numbers.

[tex]\[ y - 7 = \square \][/tex]



Answer :

To complete the point-slope equation of the line through the points [tex]\((-5, 7)\)[/tex] and [tex]\((-4, 0)\)[/tex], let's go through the steps in detail:

1. Identify the points: We are given the points [tex]\((-5, 7)\)[/tex] and [tex]\((-4, 0)\)[/tex].

2. Determine the slope:
- The formula for the slope [tex]\( m \)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
- Substituting our points:
[tex]\[ m = \frac{0 - 7}{-4 - (-5)} = \frac{-7}{-4 + 5} = \frac{-7}{1} = -7 \][/tex]

3. Write the point-slope form equation:
- The point-slope form of a line equation is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
- Here, [tex]\( (x_1, y_1) = (-5, 7) \)[/tex] and [tex]\( m = -7 \)[/tex].

4. Substitute the known values into the equation:
[tex]\[ y - 7 = -7(x - (-5)) \][/tex]

5. Simplify the equation:
- Since [tex]\( x - (-5) \)[/tex] simplifies to [tex]\( x + 5 \)[/tex]:
[tex]\[ y - 7 = -7(x + 5) \][/tex]

Therefore, the complete point-slope equation of the line is:
[tex]\[ y - 7 = -7(x + 5) \][/tex]