Select the correct answers from each drop-down menu.

Complete the steps in the proof that show quadrilateral KITE with vertices [tex]\( K (0, -2) \)[/tex], [tex]\( I (1, 2) \)[/tex], [tex]\( T (7, 5) \)[/tex], and [tex]\( E (4, -1) \)[/tex] is a kite.

Using the distance formula:
[tex]\[ K I = \sqrt{(2 - (-2))^2 + (1 - 0)^2} = \sqrt{17} \][/tex]
[tex]\[ K E = \square \][/tex]
[tex]\[ I T = \square \][/tex]
[tex]\[ T E = \square \][/tex]

Therefore, KITE is a kite because [tex]\(\square\)[/tex].



Answer :

Let's go through the steps to show that quadrilateral KITE is a kite using the distance formula.

We need to calculate the lengths of KI, KE, IT, and TE using the coordinates given for K (0,-2), I (1,2), T (7,5), and E (4,-1).

1. Calculate [tex]\( KI \)[/tex]:

Using the coordinates K (0,-2) and I (1,2):

[tex]\[ KI = \sqrt{(1 - 0)^2 + (2 - (-2))^2} = \sqrt{1^2 + 4^2} = \sqrt{1 + 16} = \sqrt{17} \approx 4.123 \][/tex]

2. Calculate [tex]\( KE \)[/tex]:

Using the coordinates K (0,-2) and E (4,-1):

[tex]\[ KE = \sqrt{(4 - 0)^2 + (-1 - (-2))^2} = \sqrt{4^2 + 1^2} = \sqrt{16 + 1} = \sqrt{17} \approx 4.123 \][/tex]

3. Calculate [tex]\( IT \)[/tex]:

Using the coordinates I (1,2) and T (7,5):

[tex]\[ IT = \sqrt{(7 - 1)^2 + (5 - 2)^2} = \sqrt{6^2 + 3^2} = \sqrt{36 + 9} = \sqrt{45} \approx 6.708 \][/tex]

4. Calculate [tex]\( TE \)[/tex]:

Using the coordinates T (7,5) and E (4,-1):

[tex]\[ TE = \sqrt{(7 - 4)^2 + (5 - (-1))^2} = \sqrt{3^2 + 6^2} = \sqrt{9 + 36} = \sqrt{45} \approx 6.708 \][/tex]

Now, let's fill in the blanks:

Using the distance formula, [tex]\( KI = \sqrt{17} \)[/tex], [tex]\( KE = \sqrt{17} \)[/tex], [tex]\( IT = \sqrt{45} \)[/tex], and [tex]\( TE = \sqrt{45} \)[/tex].

Therefore, KITE is a kite because it has two pairs of adjacent sides that are equal in length: [tex]\( KI = KE \)[/tex] and [tex]\( IT = TE \)[/tex].