Evaluate and match each expression on the left to its value on the right when [tex]\( x=7 \)[/tex] and [tex]\( y=4 \)[/tex].

\[
\begin{tabular}{ll}
1. [tex]\(12 + x\)[/tex] & A. 6 \\
2. [tex]\(3x + y\)[/tex] & B. 14 \\
3. [tex]\(4y - 10\)[/tex] & C. 25 \\
4. [tex]\(\frac{1}{2}xy\)[/tex] & D. 19 \\
\end{tabular}



Answer :

Let's evaluate and match each expression on the left to its value on the right when [tex]\( x = 7 \)[/tex] and [tex]\( y = 4 \)[/tex].

Here are the expressions to evaluate:
1. [tex]\( 12 + x \)[/tex]
2. [tex]\( 3x + y \)[/tex]
3. [tex]\( 4y - 10 \)[/tex]
4. [tex]\( \frac{1}{2}xy \)[/tex]

### Step-by-Step Evaluation:

1. Evaluate [tex]\( 12 + x \)[/tex] when [tex]\( x = 7 \)[/tex]:
[tex]\[ 12 + x = 12 + 7 = 19 \][/tex]
So, [tex]\( 12 + x \)[/tex] equals 19.

2. Evaluate [tex]\( 3x + y \)[/tex] when [tex]\( x = 7 \)[/tex] and [tex]\( y = 4 \)[/tex]:
[tex]\[ 3x + y = 3 \times 7 + 4 = 21 + 4 = 25 \][/tex]
So, [tex]\( 3x + y \)[/tex] equals 25.

3. Evaluate [tex]\( 4y - 10 \)[/tex] when [tex]\( y = 4 \)[/tex]:
[tex]\[ 4y - 10 = 4 \times 4 - 10 = 16 - 10 = 6 \][/tex]
So, [tex]\( 4y - 10 \)[/tex] equals 6.

4. Evaluate [tex]\( \frac{1}{2}xy \)[/tex] when [tex]\( x = 7 \)[/tex] and [tex]\( y = 4 \)[/tex]:
[tex]\[ \frac{1}{2}xy = \frac{1}{2} \times 7 \times 4 = 3.5 \times 4 = 14 \][/tex]
So, [tex]\( \frac{1}{2}xy \)[/tex] equals 14.

### Matching:

Now let's match these evaluated values with the given answers on the right:

- [tex]\( 12 + x \)[/tex] which is 19
- [tex]\( 3x + y \)[/tex] which is 25
- [tex]\( 4y - 10 \)[/tex] which is 6
- [tex]\( \frac{1}{2}xy \)[/tex] which is 14

Therefore, the correct matching is:

[tex]\[ \begin{tabular}{ll} $12 + x$ & 19 \\ $3x + y$ & 25 \\ $4y - 10$ & 6 \\ $\frac{1}{2}xy$ & 14 \\ \end{tabular} \][/tex]

These are the correct matches for the expressions with their values.