What is the product of [tex]\( \frac{7}{16}, \frac{4}{3}, \)[/tex] and [tex]\( \frac{1}{2} \)[/tex]?

A. [tex]\( \frac{2^{13}}{48} \)[/tex]

B. [tex]\( \frac{7}{24} \)[/tex]

C. [tex]\( \frac{7}{12} \)[/tex]

D. [tex]\( \frac{21}{32} \)[/tex]



Answer :

To determine the product of the fractions [tex]\(\frac{7}{16}\)[/tex], [tex]\(\frac{4}{3}\)[/tex], and [tex]\(\frac{1}{2}\)[/tex], we can follow these steps:

1. Multiply the numerators:

[tex]\[ \text{Numerators: } 7 \times 4 \times 1 = 28 \][/tex]

2. Multiply the denominators:

[tex]\[ \text{Denominators: } 16 \times 3 \times 2 = 96 \][/tex]

3. Form the initial fraction:

[tex]\[ \frac{28}{96} \][/tex]

4. Simplify the fraction:

To simplify [tex]\(\frac{28}{96}\)[/tex], we need to find the greatest common divisor (GCD) of 28 and 96. The GCD of 28 and 96 is 4.

[tex]\[ \text{GCD of 28 and 96 is } 4 \][/tex]

Now, divide both the numerator and the denominator by their GCD:

[tex]\[ \frac{28 \div 4}{96 \div 4} = \frac{7}{24} \][/tex]

5. Conclusion:

The simplified fraction is [tex]\(\frac{7}{24}\)[/tex].

Hence, the correct answer is [tex]\(\boxed{B}\)[/tex], [tex]\(\frac{7}{24}\)[/tex].