To solve for [tex]\( j(8) \)[/tex] in the function [tex]\( j(x) = \sqrt{3x + 1} \)[/tex], follow these steps:
1. Identify the function:
The function given is [tex]\( j(x) = \sqrt{3x + 1} \)[/tex].
2. Substitute [tex]\( x \)[/tex] with 8:
We need to find the value of the function when [tex]\( x = 8 \)[/tex]. Thus, substitute 8 for [tex]\( x \)[/tex] in the function:
[tex]\[
j(8) = \sqrt{3(8) + 1}
\][/tex]
3. Simplify inside the square root:
Calculate the expression inside the square root:
[tex]\[
3(8) + 1 = 24 + 1 = 25
\][/tex]
4. Compute the square root:
Now, find the square root of 25:
[tex]\[
\sqrt{25} = 5
\][/tex]
Thus, the value of [tex]\( j(8) \)[/tex] is [tex]\( \boxed{5} \)[/tex].