Certainly! Below is the two-column proof for the given argument:
[tex]\[
\begin{array}{|c|c|}
\hline
\textbf{Statements} & \textbf{Reasons} \\
\hline
1. \, AB = CD & 1. \, \text{Given} \\
\hline
2. \, BC = DE & 2. \, \text{Given} \\
\hline
3. \, AB + BC = CD + BC & 3. \, \text{Addition property of equality} \\
\hline
4. \, AB + BC = CD + DE & 4. \, \text{Substitution (using BC = DE)} \\
\hline
5. \, AB + BC = AC & 5. \, \text{Segment addition} \\
\hline
6. \, CD + DE = CE & 6. \, \text{Segment addition} \\
\hline
7. \, AC = CE & 7. \, \text{Substitution (replacing AB + BC with AC and CD + DE with CE)} \\
\hline
\end{array}
\][/tex]
This two-column proof corresponds to the given paragraph explanation and logically shows each step and its justification, leading to the conclusion that [tex]\( AC = CE \)[/tex].