Answer :
To find [tex]\( a_{34} \)[/tex] using the provided formula [tex]\( a_n = 37 - 5n \)[/tex]:
1. Identify the value of [tex]\( n \)[/tex]. In this case, [tex]\( n = 34 \)[/tex].
2. Substitute [tex]\( n = 34 \)[/tex] into the formula [tex]\( a_n = 37 - 5n \)[/tex]:
[tex]\[ a_{34} = 37 - 5(34) \][/tex]
3. Calculate the product inside the parentheses:
[tex]\[ 5 \times 34 = 170 \][/tex]
4. Substitute the product back into the equation:
[tex]\[ a_{34} = 37 - 170 \][/tex]
5. Perform the subtraction:
[tex]\[ a_{34} = 37 - 170 = -133 \][/tex]
Therefore, the value of [tex]\( a_{34} \)[/tex] is [tex]\( -133 \)[/tex].
1. Identify the value of [tex]\( n \)[/tex]. In this case, [tex]\( n = 34 \)[/tex].
2. Substitute [tex]\( n = 34 \)[/tex] into the formula [tex]\( a_n = 37 - 5n \)[/tex]:
[tex]\[ a_{34} = 37 - 5(34) \][/tex]
3. Calculate the product inside the parentheses:
[tex]\[ 5 \times 34 = 170 \][/tex]
4. Substitute the product back into the equation:
[tex]\[ a_{34} = 37 - 170 \][/tex]
5. Perform the subtraction:
[tex]\[ a_{34} = 37 - 170 = -133 \][/tex]
Therefore, the value of [tex]\( a_{34} \)[/tex] is [tex]\( -133 \)[/tex].