Two tables each have a mass of 29 kg. If the gravitational force between them is [tex]\(4.24 \times 10^{-10} \, N\)[/tex], how far apart are they?
[tex]\(G = 6.67 \times 10^{-11} \, N \cdot (m/kg)^2\)[/tex]

A. [tex]\(10.23 \, m\)[/tex]
B. [tex]\(11.5 \, m\)[/tex]
C. [tex]\(12.01 \, m\)[/tex]
D. [tex]\(9.55 \, m\)[/tex]



Answer :

To determine the distance between the two tables given their masses and the gravitational force between them, we will use the formula for gravitational force:

[tex]\[ F = G \times \frac{m1 \times m2}{d^2} \][/tex]

Where:
- [tex]\( F \)[/tex] is the gravitational force between the two objects,
- [tex]\( G \)[/tex] is the gravitational constant,
- [tex]\( m1 \)[/tex] and [tex]\( m2 \)[/tex] are the masses of the two objects,
- [tex]\( d \)[/tex] is the distance between the centers of the two masses.

First, let's rearrange the formula to solve for the distance [tex]\( d \)[/tex]:

[tex]\[ d^2 = G \times \frac{m1 \times m2}{F} \][/tex]

Taking the square root of both sides gives us:

[tex]\[ d = \sqrt{G \times \frac{m1 \times m2}{F}} \][/tex]

Now, let's plug in the given values:
- [tex]\( m1 = 29 \, \text{kg} \)[/tex]
- [tex]\( m2 = 29 \, \text{kg} \)[/tex]
- [tex]\( F = 4.24 \times 10^{-10} \, \text{N} \)[/tex]
- [tex]\( G = 6.67 \times 10^{-11} \, \text{N} \cdot (\text{m} / \text{kg})^2 \)[/tex]

Substituting these values into the equation:

[tex]\[ d = \sqrt{(6.67 \times 10^{-11}) \times \frac{(29)(29)}{4.24 \times 10^{-10}}} \][/tex]

Upon performing the calculation, we find:

[tex]\[ d \approx 11.502122445649627 \, \text{m} \][/tex]

Thus, the distance between the two tables is approximately 11.5 meters. Therefore, the correct answer is:

B. [tex]\( 11.5 \, \text{m} \)[/tex]