Select the correct answer.

What are the [tex]\(x\)[/tex]-intercept and the [tex]\(y\)[/tex]-intercept of this function?

[tex]\[ f(x) = 4x + 12 \][/tex]

A. The [tex]\(x\)[/tex]-intercept is [tex]\((3, 0)\)[/tex], and the [tex]\(y\)[/tex]-intercept is [tex]\((0, -12)\)[/tex].

B. The [tex]\(x\)[/tex]-intercept is [tex]\((-3, 0)\)[/tex], and the [tex]\(y\)[/tex]-intercept is [tex]\((0, -12)\)[/tex].

C. The [tex]\(x\)[/tex]-intercept is [tex]\((3, 0)\)[/tex], and the [tex]\(y\)[/tex]-intercept is [tex]\((0, 12)\)[/tex].

D. The [tex]\(x\)[/tex]-intercept is [tex]\((-3, 0)\)[/tex], and the [tex]\(y\)[/tex]-intercept is [tex]\((0, 12)\)[/tex].



Answer :

To solve this problem, we need to determine the [tex]\( x \)[/tex]-intercept and [tex]\( y \)[/tex]-intercept of the linear function [tex]\( f(x) = 4x + 12 \)[/tex].

### Finding the [tex]\( x \)[/tex]-intercept:
The [tex]\( x \)[/tex]-intercept is the point where the graph of the function crosses the [tex]\( x \)[/tex]-axis. At this point, the value of [tex]\( f(x) \)[/tex] is 0. Thus, we set the equation equal to zero and solve for [tex]\( x \)[/tex]:

[tex]\[ 0 = 4x + 12 \][/tex]

Subtract 12 from both sides:

[tex]\[ -12 = 4x \][/tex]

Divide both sides by 4:

[tex]\[ x = -3 \][/tex]

Hence, the [tex]\( x \)[/tex]-intercept is [tex]\((-3, 0)\)[/tex].

### Finding the [tex]\( y \)[/tex]-intercept:
The [tex]\( y \)[/tex]-intercept is the point where the graph of the function crosses the [tex]\( y \)[/tex]-axis. At this point, the value of [tex]\( x \)[/tex] is 0. We substitute [tex]\( x \)[/tex] with 0 in the function:

[tex]\[ f(0) = 4(0) + 12 = 12 \][/tex]

So, the [tex]\( y \)[/tex]-intercept is [tex]\((0, 12)\)[/tex].

### Conclusion:
Based on our calculations, we find that:
- The [tex]\( x \)[/tex]-intercept is [tex]\((-3, 0)\)[/tex]
- The [tex]\( y \)[/tex]-intercept is [tex]\((0, 12)\)[/tex]

Therefore, the correct answer is:

D. The [tex]\( x \)[/tex]-intercept is [tex]\((-3,0)\)[/tex], and the [tex]\( y \)[/tex]-intercept is [tex]\((0,12)\)[/tex].