Answer :
Alright, let's go through the steps to determine which brand the store should eliminate based on the return rates.
First, we need to find the return rate for each brand. The return rate is calculated by dividing the number of returns by the total number of items sold for each brand.
Given the data for each brand:
- Brand A: 17 returns out of 343 sold
- Brand B: 14 returns out of 180 sold
- Brand C: 16 returns out of 383 sold
- Brand D: 8 returns out of 246 sold
Let's calculate the return rate for each brand:
1. Return Rate for Brand A:
[tex]\[ \text{Return Rate}_A = \frac{\text{Returns}_A}{\text{Total Sold}_A} = \frac{17}{343} \approx 0.0496 \][/tex]
2. Return Rate for Brand B:
[tex]\[ \text{Return Rate}_B = \frac{\text{Returns}_B}{\text{Total Sold}_B} = \frac{14}{180} \approx 0.0778 \][/tex]
3. Return Rate for Brand C:
[tex]\[ \text{Return Rate}_C = \frac{\text{Returns}_C}{\text{Total Sold}_C} = \frac{16}{383} \approx 0.0418 \][/tex]
4. Return Rate for Brand D:
[tex]\[ \text{Return Rate}_D = \frac{\text{Returns}_D}{\text{Total Sold}_D} = \frac{8}{246} \approx 0.0325 \][/tex]
Next, we compare these return rates to determine which brand has the highest rate of returns.
- Return Rate for Brand A: [tex]\( \approx 0.0496 \)[/tex]
- Return Rate for Brand B: [tex]\( \approx 0.0778 \)[/tex]
- Return Rate for Brand C: [tex]\( \approx 0.0418 \)[/tex]
- Return Rate for Brand D: [tex]\( \approx 0.0325 \)[/tex]
Based on these calculations, the brand with the highest return rate is Brand B with a return rate of approximately [tex]\( 0.0778 \)[/tex].
Therefore, the store should eliminate:
Brand B
First, we need to find the return rate for each brand. The return rate is calculated by dividing the number of returns by the total number of items sold for each brand.
Given the data for each brand:
- Brand A: 17 returns out of 343 sold
- Brand B: 14 returns out of 180 sold
- Brand C: 16 returns out of 383 sold
- Brand D: 8 returns out of 246 sold
Let's calculate the return rate for each brand:
1. Return Rate for Brand A:
[tex]\[ \text{Return Rate}_A = \frac{\text{Returns}_A}{\text{Total Sold}_A} = \frac{17}{343} \approx 0.0496 \][/tex]
2. Return Rate for Brand B:
[tex]\[ \text{Return Rate}_B = \frac{\text{Returns}_B}{\text{Total Sold}_B} = \frac{14}{180} \approx 0.0778 \][/tex]
3. Return Rate for Brand C:
[tex]\[ \text{Return Rate}_C = \frac{\text{Returns}_C}{\text{Total Sold}_C} = \frac{16}{383} \approx 0.0418 \][/tex]
4. Return Rate for Brand D:
[tex]\[ \text{Return Rate}_D = \frac{\text{Returns}_D}{\text{Total Sold}_D} = \frac{8}{246} \approx 0.0325 \][/tex]
Next, we compare these return rates to determine which brand has the highest rate of returns.
- Return Rate for Brand A: [tex]\( \approx 0.0496 \)[/tex]
- Return Rate for Brand B: [tex]\( \approx 0.0778 \)[/tex]
- Return Rate for Brand C: [tex]\( \approx 0.0418 \)[/tex]
- Return Rate for Brand D: [tex]\( \approx 0.0325 \)[/tex]
Based on these calculations, the brand with the highest return rate is Brand B with a return rate of approximately [tex]\( 0.0778 \)[/tex].
Therefore, the store should eliminate:
Brand B