Certainly! Let's solve the problem step by step.
1. Identify the slope [tex]\( m \)[/tex] and the intercept [tex]\( c \)[/tex]:
- The slope [tex]\( m \)[/tex] is used to determine how steep the line is.
- The intercept [tex]\( c \)[/tex] is the point where the line crosses the y-axis.
2. Substitute the given values:
- Here, the slope [tex]\( m \)[/tex] is given as [tex]\( 1 \)[/tex].
- The y-intercept [tex]\( c \)[/tex] is given as [tex]\( 2 \)[/tex].
3. Formulate the equation [tex]\( y = mx + c \)[/tex]:
- Substitute the values of [tex]\( m \)[/tex] and [tex]\( c \)[/tex] into the equation.
So, plugging in the values, we get:
[tex]\[
y = 1x + 2
\][/tex]
Thus, the equation of the line in the form [tex]\( y = mx + c \)[/tex] is:
[tex]\[
y = 1x + 2
\][/tex]
Or more simply:
[tex]\[
y = x + 2
\][/tex]