To solve for [tex]\( f(2) \)[/tex] given the function [tex]\( f(x) = x \cdot \frac{\pi}{60} \)[/tex]:
1. Substitute 2 for [tex]\( x \)[/tex] in the function:
[tex]\[
f(2) = 2 \cdot \frac{\pi}{60}
\][/tex]
2. Simplify the expression:
- Multiply 2 by [tex]\(\frac{\pi}{60}\)[/tex]:
[tex]\[
2 \cdot \frac{\pi}{60} = \frac{2\pi}{60}
\][/tex]
3. Simplify the fraction:
- Divide both the numerator and the denominator by 2:
[tex]\[
\frac{2\pi}{60} = \frac{\pi}{30}
\][/tex]
4. Approximate the value of [tex]\(\frac{\pi}{30}\)[/tex] using the known value of [tex]\(\pi \approx 3.14159265359\)[/tex]:
[tex]\[
\frac{\pi}{30} \approx \frac{3.14159265359}{30} \approx 0.10471975511965977
\][/tex]
Therefore, the value of [tex]\( f(2) \)[/tex] is [tex]\( 0.10471975511965977 \)[/tex].