Applying the Quadratic Formula: Decimal Answers

Use the quadratic formula to solve for [tex]\( x \)[/tex].

[tex]\[ 4x^2 = 9x - 3 \][/tex]

Round your answer to the nearest hundredth. If there is more than one solution, separate them with commas.

[tex]\[ x = \][/tex]

[tex]\[ \square \][/tex]



Answer :

To solve the quadratic equation [tex]\( 4x^2 = 9x - 3 \)[/tex], we'll follow these steps:

1. Rewrite the equation in standard form:
The standard form of a quadratic equation is [tex]\( ax^2 + bx + c = 0 \)[/tex].
We start with:
[tex]\[ 4x^2 = 9x - 3 \][/tex]
To convert this into the standard form, move all terms to one side of the equation:
[tex]\[ 4x^2 - 9x + 3 = 0 \][/tex]

Now, we can identify the coefficients:
[tex]\[ a = 4, \quad b = -9, \quad c = 3 \][/tex]

2. Calculate the discriminant:
The discriminant of a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:
[tex]\[ \Delta = (-9)^2 - 4 \cdot 4 \cdot 3 = 81 - 48 = 33 \][/tex]

3. Use the quadratic formula:
The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Substituting the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and the discriminant [tex]\( \Delta \)[/tex]:
[tex]\[ x = \frac{9 \pm \sqrt{33}}{8} \][/tex]

4. Calculate the two solutions:
We compute the two potential solutions for [tex]\( x \)[/tex]:
[tex]\[ x_1 = \frac{9 + \sqrt{33}}{8} \][/tex]
[tex]\[ x_2 = \frac{9 - \sqrt{33}}{8} \][/tex]

5. Round the solutions to the nearest hundredth:
Finally, we round the solutions to the nearest hundredth. Given:
[tex]\[ x_1 \approx 1.84 \quad \text{and} \quad x_2 \approx 0.41 \][/tex]

Therefore, the solutions to the quadratic equation [tex]\( 4x^2 = 9x - 3 \)[/tex] rounded to the nearest hundredth are:
[tex]\[ x = 1.84, 0.41 \][/tex]