Simplify the expression: [tex]\(-\frac{1}{7}(-3x + 7)\)[/tex]

A. [tex]\(\frac{3}{7}x + 7\)[/tex]
B. [tex]\(-\frac{3}{7}x + 7\)[/tex]
C. [tex]\(-\frac{3}{7}x + 1\)[/tex]
D. [tex]\(\frac{3}{7}x - 1\)[/tex]



Answer :

To simplify the expression [tex]\(-\frac{1}{7}(-3x + 7)\)[/tex], we will distribute [tex]\(-\frac{1}{7}\)[/tex] to each term inside the parentheses. Here are the steps:

1. Distribute [tex]\(-\frac{1}{7}\)[/tex] to [tex]\(-3x\)[/tex]:

[tex]\[ -\frac{1}{7} \cdot (-3x) = \frac{3}{7}x \][/tex]

Explanation: Multiplying [tex]\(-\frac{1}{7}\)[/tex] by [tex]\(-3x\)[/tex] results in a positive value because multiplying two negative numbers yields a positive result. Therefore, [tex]\(-\frac{1}{7} \cdot -3x = \frac{3}{7}x\)[/tex].

2. Distribute [tex]\(-\frac{1}{7}\)[/tex] to [tex]\(7\)[/tex]:

[tex]\[ -\frac{1}{7} \cdot 7 = -1 \][/tex]

Explanation: Multiplying [tex]\(-\frac{1}{7}\)[/tex] by [tex]\(7\)[/tex] results in [tex]\(-1\)[/tex]. This is because [tex]\(7 \cdot \frac{1}{7} = 1\)[/tex] and the negative sign makes it [tex]\(-1\)[/tex].

3. Combine the simplified terms:

[tex]\[ \frac{3}{7}x - 1 \][/tex]

So, the simplified expression is:

[tex]\[ \frac{3}{7} x - 1 \][/tex]

Therefore, the correct answer is:

[tex]\[ \boxed{\frac{3}{7} x - 1} \][/tex]

This corresponds to option D.