What is the difference of the polynomials?

[tex]\[
(8r^6s^3 - 9r^5s^4 + 3r^4s^5) - (2r^4s^5 - 5r^3s^6 - 4r^5s^4)
\][/tex]

A. [tex]\(6r^6s^3 - 4r^5s^4 + 7r^4s^5\)[/tex]

B. [tex]\(6r^6s^3 - 13r^5s^4 - r^4s^5\)[/tex]

C. [tex]\(8r^6s^3 - 5r^5s^4 + r^4s^5 + 5r^3s^6\)[/tex]

D. [tex]\(8r^6s^3 - 13r^5s^4 + r^4s^5 - 5r^3s^6\)[/tex]



Answer :

Sure, let's find the difference of these two polynomials step-by-step.

We start with:
[tex]\[ \left(8 r^6 s^3-9 r^5 s^4+3 r^4 s^5\right)-\left(2 r^4 s^5-5 r^3 s^6-4 r^5 s^4\right) \][/tex]

First, distribute the negative sign through the second polynomial:
[tex]\[ 8 r^6 s^3-9 r^5 s^4+3 r^4 s^5 - 2 r^4 s^5 + 5 r^3 s^6 + 4 r^5 s^4 \][/tex]

Now, combine like terms:
- For the term [tex]\(r^6 s^3\)[/tex]:
[tex]\[ 8 r^6 s^3 \][/tex]

- For the term [tex]\(r^5 s^4\)[/tex]:
[tex]\[ -9 r^5 s^4 + 4 r^5 s^4 = -5 r^5 s^4 \][/tex]

- For the term [tex]\(r^4 s^5\)[/tex]:
[tex]\[ 3 r^4 s^5 - 2 r^4 s^5 = r^4 s^5 \][/tex]

- For the term [tex]\(r^3 s^6\)[/tex]:
[tex]\[ 5 r^3 s^6 \][/tex]

Putting it all together, we get:
[tex]\[ 8 r^6 s^3 - 5 r^5 s^4 + r^4 s^5 + 5 r^3 s^6 \][/tex]

So, the difference of the polynomials is:
[tex]\[ \boxed{8 r^6 s^3-5 r^5 s^4+r^4 s^5+5 r^3 s^6} \][/tex]