Answer :

To solve for [tex]\(\csc\left(\frac{\pi}{2}\right)\)[/tex], we need to understand the cosecant function. The cosecant function is the reciprocal of the sine function. In mathematical terms:

[tex]\[ \csc(x) = \frac{1}{\sin(x)} \][/tex]

Given the angle [tex]\(\frac{\pi}{2}\)[/tex], we first need to determine the value of [tex]\(\sin\left(\frac{\pi}{2}\right)\)[/tex]. The sine of [tex]\(\frac{\pi}{2}\)[/tex] is:

[tex]\[ \sin\left(\frac{\pi}{2}\right) = 1 \][/tex]

Now, we can find [tex]\(\csc\left(\frac{\pi}{2}\right)\)[/tex]:

[tex]\[ \csc\left(\frac{\pi}{2}\right) = \frac{1}{\sin\left(\frac{\pi}{2}\right)} = \frac{1}{1} = 1 \][/tex]

Hence, the correct answer is:

[tex]\[ \csc\left(\frac{\pi}{2}\right) = 1 \quad \text{(Option C)} \][/tex]