Which of the following shows [tex]\(\frac{18}{12}\)[/tex] as a mixed number and [tex]\(1 \frac{7}{8}\)[/tex] as an improper fraction?

[tex]\[
\frac{18}{12} = 1 \frac{1}{2} \quad \text{and} \quad 1 \frac{7}{8} = \frac{15}{8}
\][/tex]



Answer :

Sure, let's solve this question step-by-step.

### Converting [tex]\(\frac{18}{12}\)[/tex] to a Mixed Number

1. Divide the numerator by the denominator:

Divide [tex]\(18\)[/tex] by [tex]\(12\)[/tex]:
[tex]\[ 18 \div 12 = 1 \quad \text{(quotient)} \][/tex]

2. Find the remainder:

Calculate the remainder of [tex]\(18\)[/tex] divided by [tex]\(12\)[/tex]:
[tex]\[ 18 \mod 12 = 6 \][/tex]

3. Form the mixed number:

So, the mixed number is:
[tex]\[ 18 \div 12 = 1 \quad \text{with remainder} \quad 6 \][/tex]
This gives us:
[tex]\[ 1 \frac{6}{12} \][/tex]

4. Simplify the fraction:

Simplify [tex]\(\frac{6}{12}\)[/tex] to its lowest terms:
[tex]\[ \frac{6}{12} = \frac{1}{2} \][/tex]

Hence, [tex]\(\frac{18}{12}\)[/tex] as a mixed number is:
[tex]\[ 1 \frac{1}{2} \][/tex]

### Converting [tex]\(1 \frac{7}{8}\)[/tex] to an Improper Fraction

1. Multiply the whole number part by the fraction's denominator:

Multiply [tex]\(1\)[/tex] by [tex]\(8\)[/tex]:
[tex]\[ 1 \times 8 = 8 \][/tex]

2. Add the numerator of the fraction:

Add [tex]\(7\)[/tex] to the result:
[tex]\[ 8 + 7 = 15 \][/tex]

3. Form the improper fraction:

The numerator is the result from above ([tex]\(15\)[/tex]), and the denominator remains the same ([tex]\(8\)[/tex]):
[tex]\[ \frac{15}{8} \][/tex]

### Final Results

So, [tex]\(\frac{18}{12}\)[/tex] as a mixed number is:
[tex]\[ 1 \frac{1}{2} \][/tex]
And [tex]\(1 \frac{7}{8}\)[/tex] as an improper fraction is:
[tex]\[ \frac{15}{8} \][/tex]

Therefore, the following shows the correct transformations:
[tex]\[ \frac{18}{12} = 1 \frac{1}{2} \quad \text{and} \quad 1 \frac{7}{8} = \frac{15}{8} \][/tex]