Evaluate [tex]\( 5x + 3y \)[/tex] when [tex]\( x = 4 \)[/tex] and [tex]\( y = 8 \)[/tex].

Solution:

1. Substitute [tex]\( 4 \)[/tex] for [tex]\( x \)[/tex] and [tex]\( 8 \)[/tex] for [tex]\( y \)[/tex]:
[tex]\[
5(4) + 3(8)
\][/tex]

2. Evaluate the expression:
[tex]\[
5 \cdot 4 = 20
\][/tex]
[tex]\[
3 \cdot 8 = 24
\][/tex]
[tex]\[
20 + 24 = 44
\][/tex]

Answer: 44



Answer :

Evaluate the expression [tex]\(5x + 3y\)[/tex] when [tex]\(x = 4\)[/tex] and [tex]\(y = 8\)[/tex].

Step-by-step solution

1. Substitute the given values into the expression.
[tex]\[ 5x + 3y \quad \text{when} \quad x = 4 \quad \text{and} \quad y = 8 \][/tex]
[tex]\[ 5(4) + 3(8) \][/tex]

2. Perform the multiplications:
- Multiply [tex]\(5\)[/tex] by [tex]\(4\)[/tex]:
[tex]\[ 5 \times 4 = 20 \][/tex]
- Multiply [tex]\(3\)[/tex] by [tex]\(8\)[/tex]:
[tex]\[ 3 \times 8 = 24 \][/tex]

3. Add the results of the multiplications:
[tex]\[ 20 + 24 = 44 \][/tex]

Therefore, the value of the expression [tex]\(5x + 3y\)[/tex] when [tex]\(x = 4\)[/tex] and [tex]\(y = 8\)[/tex] is [tex]\(44\)[/tex].