Factor the polynomial completely.

[tex]\[ P(x) = x^5 + 13x^3 \][/tex]
[tex]\[ P(x) = \square \][/tex]

Find all its zeros. State the multiplicity of each zero.

[tex]\[
\begin{array}{ll}
\text{Zero:} & \square \\
\text{Multiplicity:} & \square \\
\\
\text{Zero:} & \square \\
\text{Multiplicity:} & \square \\
\\
\text{Zero:} & \square \\
\text{Multiplicity:} & \square \\
\\
\text{Zero:} & \square \\
\text{Multiplicity:} & \square \\
\end{array}
\][/tex]



Answer :

Let's first factor the polynomial [tex]\( P(x) = x^5 + 13x^3 \)[/tex].

### Step-by-Step Factorization:

1. Identify common factors:
- Notice that both terms, [tex]\( x^5 \)[/tex] and [tex]\( 13x^3 \)[/tex], share a common factor of [tex]\( x^3 \)[/tex].

2. Factor out the common term:
[tex]\[ x^5 + 13x^3 = x^3(x^2 + 13) \][/tex]

Therefore, the completely factored form of the polynomial is:
[tex]\[ P(x) = x^3(x^2 + 13) \][/tex]

### Finding the Zeros:

To find the zeros of the factors of [tex]\( P(x) \)[/tex]:

1. Set the factored form equal to zero:
[tex]\[ x^3(x^2 + 13) = 0 \][/tex]

2. Solve each factor for zero:

- For [tex]\( x^3 = 0 \)[/tex]:
[tex]\[ x = 0 \][/tex]
The zero here is [tex]\( x = 0 \)[/tex].

- For [tex]\( x^2 + 13 = 0 \)[/tex]:
[tex]\[ x^2 = -13 \][/tex]
[tex]\[ x = \pm \sqrt{-13} \][/tex]
Since the square root of a negative number involves imaginary numbers:
[tex]\[ x = \pm \sqrt{13}i \][/tex]
The zeros here are [tex]\( x = \sqrt{13}i \)[/tex] and [tex]\( x = -\sqrt{13}i \)[/tex].

### Determining Multiplicities:

- The factor [tex]\( x^3 \)[/tex] indicates that [tex]\( x = 0 \)[/tex] has a multiplicity of 3.
- The factor [tex]\( x^2 + 13 \)[/tex] contributes [tex]\( \sqrt{13}i \)[/tex] and [tex]\( -\sqrt{13}i \)[/tex], each with a multiplicity of 1.

### Summary:

The polynomial [tex]\( P(x) = x^5 + 13x^3 \)[/tex] can be factored and its zeros with their multiplicities are:

[tex]\[ P(x) = x^3(x^2 + 13) \][/tex]

- Zero with multiplicity 3: [tex]\( x = 0 \)[/tex]
- Zero with multiplicity 1: [tex]\( x = \sqrt{13}i \)[/tex]
- Zero with multiplicity 1: [tex]\( x = -\sqrt{13}i \)[/tex]