Solve the system of equations.

[tex]\[
\begin{cases}
y = -4x \\
y = x^2 - 12
\end{cases}
\][/tex]

A. [tex]\((-6, 24)\)[/tex] and [tex]\((2, -8)\)[/tex]

B. [tex]\((-6, -24)\)[/tex] and [tex]\((2, 8)\)[/tex]

C. [tex]\((-2, 8)\)[/tex] and [tex]\((6, -24)\)[/tex]

D. [tex]\((-2, -8)\)[/tex] and [tex]\((6, 24)\)[/tex]



Answer :

To solve the system of equations:

[tex]\[ \begin{cases} y = -4x \\ y = x^2 - 12 \end{cases} \][/tex]

We need to find the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that satisfy both equations simultaneously. Here's a detailed, step-by-step solution:

1. Set the equations equal to each other:
Since [tex]\( y \)[/tex] equals both [tex]\(-4x\)[/tex] and [tex]\( x^2 - 12 \)[/tex], we can set these expressions equal to each other:

[tex]\[ -4x = x^2 - 12 \][/tex]

2. Rearrange the equation to one side to form a quadratic equation:
Move all terms to one side of the equation to set it to zero:

[tex]\[ x^2 + 4x - 12 = 0 \][/tex]

3. Solve the quadratic equation:
To find the values of [tex]\( x \)[/tex], we can solve the quadratic equation using the quadratic formula:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Here, [tex]\( a = 1 \)[/tex], [tex]\( b = 4 \)[/tex], and [tex]\( c = -12 \)[/tex].

Calculate the discriminant:

[tex]\[ b^2 - 4ac = 4^2 - 4 \cdot 1 \cdot (-12) = 16 + 48 = 64 \][/tex]

Substitute back into the quadratic formula:

[tex]\[ x = \frac{-4 \pm \sqrt{64}}{2 \cdot 1} = \frac{-4 \pm 8}{2} \][/tex]

So we have two solutions for [tex]\( x \)[/tex]:

[tex]\[ x = \frac{-4 + 8}{2} = \frac{4}{2} = 2 \][/tex]

[tex]\[ x = \frac{-4 - 8}{2} = \frac{-12}{2} = -6 \][/tex]

4. Find the corresponding [tex]\( y \)[/tex]-values:
Substitute each [tex]\( x \)[/tex]-value back into one of the original equations (let’s use [tex]\( y = -4x \)[/tex]) to find the corresponding [tex]\( y \)[/tex]-values.

For [tex]\( x = 2 \)[/tex]:

[tex]\[ y = -4(2) = -8 \][/tex]

For [tex]\( x = -6 \)[/tex]:

[tex]\[ y = -4(-6) = 24 \][/tex]

5. Write the solutions as ordered pairs:
The solutions to the system of equations are the points where the equations intersect. These points are:

[tex]\[ (-6, 24) \quad \text{and} \quad (2, -8) \][/tex]

Therefore, the solution to the system of equations is:

A. [tex]\((-6, 24)\)[/tex] and [tex]\((2, -8)\)[/tex]