Answer :

To solve this problem, let us proceed step by step with the given values.

1. The first value [tex]\( x_1 \)[/tex] is 12.
2. The second value [tex]\( x_2 \)[/tex] is 9.
3. The third value [tex]\( x_3 \)[/tex] is [tex]\( 6 \frac{2}{3} \)[/tex].

To simplify [tex]\( 6 \frac{2}{3} \)[/tex]:

- A mixed number [tex]\( 6 \frac{2}{3} \)[/tex] consists of a whole number part (6) and a fractional part [tex]\( \frac{2}{3} \)[/tex].
- To convert [tex]\( 6 \frac{2}{3} \)[/tex] into an improper fraction, you can use the formula:
[tex]\[ \text{Improper fraction} = \left( \text{whole number} \times \text{denominator} \right) + \text{numerator} \][/tex]
Hence:
[tex]\[ 6 \frac{2}{3} = \left( 6 \times 3 \right) + 2 = 18 + 2 = 20 \][/tex]
So, [tex]\( 6 \frac{2}{3} = \frac{20}{3} \)[/tex].

- Now, converting [tex]\( \frac{20}{3} \)[/tex] to a decimal:
[tex]\[ \frac{20}{3} = 6.666666666666667 \][/tex]

Thus, we have the following final values for [tex]\( x_1 \)[/tex], [tex]\( x_2 \)[/tex], and [tex]\( x_3 \)[/tex]:
- [tex]\( x_1 = 12 \)[/tex]
- [tex]\( x_2 = 9 \)[/tex]
- [tex]\( x_3 = 6.666666666666667 \)[/tex]

So, our solution is:
[tex]\[ (12, 9, 6.666666666666667) \][/tex]