Answered

The midpoint of [tex]\(\overline{JK}\)[/tex] is point [tex]\(L\)[/tex] at [tex]\((-1, 8)\)[/tex]. One endpoint is [tex]\(J (4, -15)\)[/tex]. Which equations can be solved to determine the coordinates of the other endpoint, [tex]\(K\)[/tex]? Select two options.

A. [tex]\(\frac{4 + x_1}{2} = -1\)[/tex]
B. [tex]\(\frac{-1 + x_1}{2} = 4\)[/tex]
C. [tex]\(-15 + y_1 = 16\)[/tex]
D. [tex]\(\frac{-1 + 4}{2} = x_1\)[/tex]
E. [tex]\(\frac{8 - 15}{2} = y_1\)[/tex]



Answer :

To determine the coordinates of the other endpoint [tex]\( K \)[/tex] given the midpoint [tex]\( L(-1, 8) \)[/tex] and one endpoint [tex]\( J(4, -15) \)[/tex], we need to use the midpoint formula. The midpoint formula states:

[tex]\[ \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

Where [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] are the coordinates of the endpoints of the line segment, and the coordinates of the midpoint are [tex]\((x_m, y_m)\)[/tex].

From the given problem:
- Coordinates of midpoint [tex]\( L \)[/tex] are [tex]\((-1, 8)\)[/tex].
- Coordinates of endpoint [tex]\( J \)[/tex] are [tex]\((4, -15)\)[/tex].

We are to find the coordinates of the other endpoint [tex]\( K \)[/tex], say [tex]\((x_1, y_1)\)[/tex].

### Solve for the x-coordinate

The midpoint formula for the x-coordinates is:
[tex]\[ \frac{x_1 + x_2}{2} = x_m \][/tex]

Plugging in the known values:
[tex]\[ \frac{4 + x_1}{2} = -1 \][/tex]

This is one of the equations, thus:
[tex]\[ \frac{4 + x_1}{2} = -1 \][/tex]

### Solve for the y-coordinate

The midpoint formula for the y-coordinates is:
[tex]\[ \frac{y_1 + y_2}{2} = y_m \][/tex]

Plugging in the known values:
[tex]\[ \frac{-15 + y_1}{2} = 8 \][/tex]

This is another equation, thus:
[tex]\[ \frac{-15 + y_1}{2} = 8 \][/tex]

### Conclusion

The two equations that can be solved to determine the coordinates of the other endpoint [tex]\( K \)[/tex] are:

- [tex]\(\frac{4 + x_1}{2} = -1\)[/tex]
- [tex]\(\frac{-15 + y_1}{2} = 8\)[/tex]

These equations correctly use the midpoint formula and the given values to find the unknown endpoint [tex]\( K \)[/tex].