Answer :
Let's evaluate each of the given statements one by one:
Statement A: [tex]$0.3711 > 0.3801$[/tex]
To determine the truth of this statement, compare the numbers [tex]$0.3711$[/tex] and [tex]$0.3801$[/tex].
- [tex]$0.3711$[/tex] has the value [tex]$3711 \times 10^{-4}$[/tex]
- [tex]$0.3801$[/tex] has the value [tex]$3801 \times 10^{-4}$[/tex]
Since [tex]$3711$[/tex] is less than [tex]$3801$[/tex], the statement [tex]$0.3711 > 0.3801$[/tex] is false.
Statement B: [tex]$0.4290 = 0.429$[/tex]
To determine the truth of this statement, compare the numbers [tex]$0.4290$[/tex] and [tex]$0.429$[/tex].
- Both [tex]$0.4290$[/tex] and [tex]$0.429$[/tex] represent the same value because trailing zeros after the decimal point do not affect the numerical value.
Therefore, the statement [tex]$0.4290 = 0.429$[/tex] is true.
Statement C: [tex]$0.6798 < 0.6801$[/tex]
To determine the truth of this statement, compare the numbers [tex]$0.6798$[/tex] and [tex]$0.6801$[/tex].
- [tex]$0.6798$[/tex] has the value [tex]$6798 \times 10^{-4}$[/tex]
- [tex]$0.6801$[/tex] has the value [tex]$6801 \times 10^{-4}$[/tex]
Since [tex]$6798$[/tex] is less than [tex]$6801$[/tex], the statement [tex]$0.6798 < 0.6801$[/tex] is true.
Statement D: [tex]$0.943 > 0.1$[/tex]
To determine the truth of this statement, compare the numbers [tex]$0.943$[/tex] and [tex]$0.1$[/tex].
- [tex]$0.943$[/tex] has the value [tex]$943 \times 10^{-3}$[/tex]
- [tex]$0.1$[/tex] has the value [tex]$1 \times 10^{-1}$[/tex]
Since [tex]$943 \times 10^{-3}$[/tex] is greater than [tex]$1 \times 10^{-1}$[/tex], the statement [tex]$0.943 > 0.1$[/tex] is true.
Summarizing the evaluations:
- Statement A is false
- Statement B is true
- Statement C is true
- Statement D is true
Therefore, the statement that is not true is Statement A: [tex]$0.3711 > 0.3801$[/tex].
Statement A: [tex]$0.3711 > 0.3801$[/tex]
To determine the truth of this statement, compare the numbers [tex]$0.3711$[/tex] and [tex]$0.3801$[/tex].
- [tex]$0.3711$[/tex] has the value [tex]$3711 \times 10^{-4}$[/tex]
- [tex]$0.3801$[/tex] has the value [tex]$3801 \times 10^{-4}$[/tex]
Since [tex]$3711$[/tex] is less than [tex]$3801$[/tex], the statement [tex]$0.3711 > 0.3801$[/tex] is false.
Statement B: [tex]$0.4290 = 0.429$[/tex]
To determine the truth of this statement, compare the numbers [tex]$0.4290$[/tex] and [tex]$0.429$[/tex].
- Both [tex]$0.4290$[/tex] and [tex]$0.429$[/tex] represent the same value because trailing zeros after the decimal point do not affect the numerical value.
Therefore, the statement [tex]$0.4290 = 0.429$[/tex] is true.
Statement C: [tex]$0.6798 < 0.6801$[/tex]
To determine the truth of this statement, compare the numbers [tex]$0.6798$[/tex] and [tex]$0.6801$[/tex].
- [tex]$0.6798$[/tex] has the value [tex]$6798 \times 10^{-4}$[/tex]
- [tex]$0.6801$[/tex] has the value [tex]$6801 \times 10^{-4}$[/tex]
Since [tex]$6798$[/tex] is less than [tex]$6801$[/tex], the statement [tex]$0.6798 < 0.6801$[/tex] is true.
Statement D: [tex]$0.943 > 0.1$[/tex]
To determine the truth of this statement, compare the numbers [tex]$0.943$[/tex] and [tex]$0.1$[/tex].
- [tex]$0.943$[/tex] has the value [tex]$943 \times 10^{-3}$[/tex]
- [tex]$0.1$[/tex] has the value [tex]$1 \times 10^{-1}$[/tex]
Since [tex]$943 \times 10^{-3}$[/tex] is greater than [tex]$1 \times 10^{-1}$[/tex], the statement [tex]$0.943 > 0.1$[/tex] is true.
Summarizing the evaluations:
- Statement A is false
- Statement B is true
- Statement C is true
- Statement D is true
Therefore, the statement that is not true is Statement A: [tex]$0.3711 > 0.3801$[/tex].