If [tex]\( f(x) = 2(x)^2 + 5 \sqrt{(x+2)} \)[/tex], complete the following statement (round your answer to the nearest hundredth):

[tex]\( f(0) = \)[/tex]

Answer: ______



Answer :

To solve for [tex]\( f(0) \)[/tex] given the function [tex]\( f(x) = 2x^2 + 5\sqrt{x+2} \)[/tex], we follow these steps:

1. Substitute [tex]\( x = 0 \)[/tex] into the function:
[tex]\[ f(0) = 2(0)^2 + 5\sqrt{0 + 2} \][/tex]

2. Simplify the terms inside the function:
[tex]\[ 2(0)^2 = 0 \quad \text{and} \quad \sqrt{0 + 2} = \sqrt{2} \][/tex]

3. Calculate the value of the square root:
[tex]\[ \sqrt{2} \approx 1.414213562 \][/tex]

4. Multiply by the coefficients:
[tex]\[ 5 \times \sqrt{2} = 5 \times 1.414213562 \approx 7.07106781 \][/tex]

5. Add the calculated values:
[tex]\[ 0 + 7.07106781 = 7.07106781 \][/tex]

6. Finally, round the result to the nearest hundredth:
[tex]\[ 7.07106781 \approx 7.07 \][/tex]

Thus, the value of [tex]\( f(0) \)[/tex] rounded to the nearest hundredth is:

[tex]\[ f(0) \approx 7.07 \][/tex]